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Abstract

Mozambique, like any other country, needs to know the behavior of the main macroe-
conomic variables to make better decisions. This study aims to investigate the be-
havior as well as the relationship between macroeconomic variables and financial
time series related to Mozambique. For the study, we use univariate Autoregressive
conditional heteroskedasticity models, Vector autoregressive models and multivari-
ate Generalized autoregressive conditional heteroskedasticity models. Overall, the
study concludes that: (i) Asymmetry of shocks, volatility and currency-specific be-
havior affect economic performance, particularly in an open economy, influencing
international capital movement and goods and services transactions, (ii) Mozam-
bique’s real Gross domestic product plays an important role from cointegration
relationships, impulse response functions to forecast error variance decomposition.
(iii) The analysis of co-volatility showed the existence of relationships in volatility
between different markets which influences the systematic behavior presented by the
variables over time. These results contribute and reinforce the existing literature
in terms of the choice of the appropriate model, criteria and tests presented that
considerably affect the type of results. With this analysis of macroeconomic series
related to Mozambique’s economy, it somewhat helps the process of policy making
that increases Mozambique’s sustainable economic growth rate. In this thesis the
problem of the normality of the log-returns for stock prices is also addressed for
different formulations of price returns, namely intra-day and inter-day log-returns,
with and without data trimming and for a large set of companies stock prices.

Keywords: Exchange rate, Goss domestic product, Mozambique, Multivariate time
series, Volatility.
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Resumo

Moçambique como qualquer outro país precisa de conhecer o comportamento das
principais variáveis macroeconómicas para tomar decisões mais adequadas. Este
estudo tem como objectivo investigar o comportamento e o relacionamento entre
variáveis macroeconómicas e séries temporais financeiras relacionadas com Moçam-
bique. Para a realização do estudo usou-se modelos univariados Autoregressivos com
heteroscedasticidade condicional, modelos de Vectores autoregressivos e modelos
multivariados Generalizados autoregressivos com heteroscedasticidade condicional.
De uma forma geral, do estudo conclui-se que (i) a assimetria dos choques à vola-
tilidade e comportamento específico da moeda afectam o desempenho económico,
em particular numa economia aberta, influenciando o movimento internacional de
capitais e transações de bens e serviços, (ii) o produto interno bruto real de Moçam-
bique desempenha um papel importante desde as relações de cointegração, funções
de resposta aos impulsos até à decomposição da variância do erro de previsão, (iii)
a análise da co-volatilidade mostrou a existência de relações na volatilidade entre
diferentes mercados o que influencia no comportamento sistemático apresentado
pelas variáveis ao longo do tempo. Estes resultados trazem contribuições e reforçam
a literatura existente em termos da escolha do modelo apropriado, critérios e testes
apresentados que condicionam considerávelmente o tipo de resultados. Com esta
análise de séries macroeconómicas relacionadas à economia de Moçambique, de certa
forma ajuda o processo de definição de políticas que aumentam a taxa de crescimento
económico sustentável de Moçambique. Nesta tese o problema da normalidade dos
logarítmos dos retornos para cotações de acções também é abordado, nomeadamente
para retornos intradiários ou entre dias consecutivos, com e sem eliminação de dados
extremos e com aplicação a um grande número de empresas.

Palavras-chave: Moçambique, Produto interno bruto, Séries temporais multivaria-
das, Taxa de câmbio, Volatilidade.
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Introduction

The main objective of the modern econometric analysis of time series is to develop
models capable of forecasting, interpreting and testing hypotheses concerning eco-
nomic data. Following Kirchgässner and Wolters [69], time series analysis helps to
identify the behavior presented by the data series, which allows the formulation of
laws or to explain the observed phenomenon in order to control its behavior and to
predict future developments.

There are several models in terms of specification, estimation, and inference,
used in such analysis. For example when the analysis is referent to a univariate time
series as well as its volatility, the class of autoregressive integrated moving average
(ARIMA) and autoregressive conditional heteroskedasticity (ARCH) or Generalized
ARCH (GARCH) models are used (Box and Jenkins [22], Bollerslev et al. [21] and
Brooks [27]). While when the study is carried out for a set of time series, that is
multivariate time series with the purpose of knowing the behavior of each series, as
well as the interaction of the series and the relationship of their volatilities, the vector
autoregressive (VAR) and multivariate GARCH (MGARCH) models, are generally
used. The procedures for the study of multivariate data analysis of time series can
be found in Bauwens el al. [6], Engle and Kroner [43], Faust [49], Lütkepohl [77],
among others.

In this context, this study approaches both univariate and multivariate time
series models, giving greater focus on the interaction between the series over time
as well as the analysis of their volatility. The study is motivated by the need to
understand and disclose information related to the behavior of macroeconomic series
such as Gross Domestic Product (GDP), inflation, exchange rate and their effects

1
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CHAPTER 1. INTRODUCTION

on short and long terms as well as the results of the dynamics between them in the
Mozambican economy without forgetting the interaction between Mozambique and
other countries in the world in particular those on the region. Therefore, the basic
reference in the subsequent applications is Mozambique.

1.1 The problem

Mozambique achieved independence from Portugal in 1975, however, from 1977 to
1992 was involved in a civil war, as documented in Organization for Economic Co-
operation and Development (OECD) [93]. After the signing of the General Peace
Agreement (GPA), “in Portuguese, Acordo Geral de Paz (AGP)” of 1992, the coun-
try was among the poorest in the world, with low social and economic indicators.
Nevertheless, a new era began one of the market economies with free movement of
people, goods, and services. Since then, a number of new companies looking to invest
appear and on the other hand, old companies try to expand their activities according
to their segment of the business. Allied to this, the country is in a situation in which
is important to evaluate what are the most appropriate choices in terms of public or
private investment, to boost the economic development of the country in the best
and more comprehensive way as possible.

It is well known from the economic literature that changes in a macroeconomic
variables of a given country are linked to variations in other variables and may
also be related to the influence of neighbouring markets. Taking into account the
interactions between the different variables, these changes experience higher or lower
levels. The fluctuations affect somehow the government policies in decision making.
In addition, the lack of accurate information leaves investors unsecured with respect
to investment decisions.

Decision making is often supported by the use of quantitative information. There-
fore, the main task of econometrics is to summarize information related to a data-set
through a model that can help to understand or describe the relationship between
variables and to analyse the possible effects of decisions. In this context, we pro-
pose to study the behavior of macroeconomic variables as well as their interactions
to identify how they influence each other. This understanding of the relationship
between macroeconomic variables helps the government, private companies, non-
governmental organizations to make the best investment decisions or not, which
develops the economy of the country as a whole.

Thus, the problem in studies can be decomposed in the following points:
1) Even knowing that Mozambique has little systematized information, studies
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describing the behavior of macroeconomic variables is necessary. For this purpose
we use univariate models such as ARIMA or ARCH models, which allows knowing
the behavior of the series and make a consequent forecast.

2) Another type of study that somehow helps the decision making process of
government policy is multivariate data analysis. This problem is illustrated by VAR
models, where several variables are analysed simultaneously and their relationship
are studied. Here the decisions are based on information from a set of variables.

3) In the economic and financial context, it is necessary to increase the analysis
of the dynamics and volatility between markets, in order to make it possible to
understand the links in the short and long term or the influence of changes in
policies that regulate the functioning of one market in relation to the others. For
this problem, we use MGARCH models, which in the analysis take into account the
linkage of the information in a certain market as part of a whole set of markets.

4) The assumption of normality in the statistical analyses is always evoked, in
particular, the normality of the log-returns of stock prices is often assumed by the
market players in order to validate and use some results. However, several studies
regarding different indexes have shown that the normality assumption of the returns
usually fails. Rejection of the normality of the series may be due to the type of data,
the method used for the test or even the procedure that is chosen. Depending on
the test result, the decision may be the most appropriate or not.

Thus, by providing accurate and up-to-date information on the trend of series,
relationships between variables and the dynamics between different economic mar-
kets, the government as the potential use of information can make strategic decisions
that are more sustainable for the country’s economic development.

1.2 The objectives
To solve the presented problems four main objectives are formulated:

1. Investigate the behavior of Mozambican New Metical against South African
Rand Exchange rate between 2010 to 2014.

2. Analyse the dynamic of the relationship between three macroeconomic variables
related to Mozambique economy such as Mozambique real Gross domestic
product, Mozambique GDP deflator and the South Africa real GDP, over 1990
to 2012.

3. Analyse the relationship between the Mozambican New Metical against South
African Rand and also against Great Britain Pound, plus the quote of the price
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of Coal of Africa, between 2010-2014.

4. Test the normality assumption for different formulations of log-returns of stock
prices in opening and closing using five procedures.

In order to meet the first objective, we inspect how risk is affected by news sign and
size within distinct exchange rate trend and by volatility model choice. For that we
apply the univariate asymmetric GARCH models to modelling the Mozambican New
Metical against South African Rand exchange rate in four sub-periods, where the
exchange rate exhibits different behavior and a full sample; identifying the possible
sign and size bias in the sub-periods as well as for the full sample and discuss the
asymmetric effect of the shocks in volatility over time. This objective is discussed
in application of chapter 2.

For the second objective, we use vector error correction (VEC) and Structural
vector error correction (SVEC) models to analyse the role of supply, demand and
external shocks in an open economy. The study identifies the relationship between
aggregate supply and aggregate demand shocks in the presence of external shocks to
the economic growth of Mozambique. For this purpose, it is presented the application
for VAR models at the end of chapter 3.

For the third objective, we investigate the co-movement of volatilities among
the series of Mozambican New Metical against South African Rand exchange rate,
Mozambican New Metical against Great Britain Pound exchange rate and the quote
of price of Coal for Africa; we assess the quality of the models regarding prediction
and discuss the differences in the estimated co-volatility. This is operationalized
using Multivariate GARCH models, where we estimate MGARCH models in the class
of conditional correlation family for four sub-periods identified between 2010-2014.
In the application of chapter 4 we discuss this objective.

Finally, for the fourth objective, we analyse the normality assumption for intra-
day and inter-day log-returns, where we compare opening and closing prices for a
large number of companies quoted in the Nasdaq Composite Index. To perform
the normality test we implement five alternative procedures for normality tests: the
Pearson’s Chi-Square, Kolmogorov-Smirnov, Anderson - Darling’s, Shapiro - Wilks’s
and Jarque-Bera test. Details of the procedures are described in chapter 5.

According to the objectives, the thesis consists essentially of four chapters whose
applications are articles published in scientific journals or submitted for publication.
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1.3 The thesis structure
After the introduction in chapter 1, where we present the problem and the main
objectives, the contents of this thesis are structured as follows:

• In chapter 2, we focus on the analysis and application of univariate financial
time series. That is, we study the autoregressive conditional heteroskedasticity
models, wherein the section 2.1 we present univariate time series concepts
and associate tests for normality, stationarity, autocorrelation, unit roots and
nonstationary time series. The general formulation and properties of ARCH
and GARCH models are presented in section 2.2. In the section 2.3, we present
alternative models to modelling volatility in time series, which in the litera-
ture are known as extensions of GARCH model proposed to capture certain
characteristics presented by the financial time series, such as volatility cluster,
leverage effects, asymmetric effect. The univariate procedure of maximum
likelihood estimation, forecast and model evaluation are discussed in the sec-
tion 2.4. The chapter ends with an application in section 2.5, where we apply
the univariate asymmetric GARCH model such as Exponential GARCH of
Nelson [90], Threshold GARCH of Zakoian [121], GJR-GARCH proposed by
Glosten et al. [52] and Asymmetric Power ARCH model of Ding et al. [34], to
analyse the behavior of the Mozambique New Metical against South Africa
Rand daily exchange rate, thus, the chapter responds to the first objective of
the thesis.

• The chapter 3 is dedicated at the multivariate time series analysis using Vector
Autoregressive (VAR) model. In the first section 3.1 of the chapter 3, we
introduce conditions for the multivariate stationary process, while the speci-
fications of the VAR model in reduced and structural form are presented in
section 3.2. In section 3.3, we present the estimation VAR parameters and
they analyse, from model choice, evaluation to analyse by Granger-causality,
forecast, impulse response functions and forecast error variance decomposition.
The concepts of cointegration and vector error correction model as well as the
procedures of Engle and Granger [42] and Johansen [63] for testing cointegra-
tion are presented in section 3.4. In section 3.5, we present the structural vector
autoregressive and structural vector error correction analysis, where we focus
on identifying the sources of shocks in VEC model, impulse response function
and forecast error variance decomposition. The final section 3.6 presents the
application of vector autoregressive models. Specially we study the dynamics
of the Mozambique real Gross Domestic Product uncovering the role of three
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aggregate shocks supply, demand and external shocks, taking the South Africa
economy as key for measuring the latter shock. Here we use the annual series
between 1990 to 2012, to identify the sources of shocks in structural vector
error correction system.

• In chapter 4, we study the relations between volatilities and co-volatilities us-
ing multivariate GARCH models. After introducing the chapter in section 4.1,
the section 4.2 is dedicated to reviewing of MGARCH models in the class
of conditional covariance matrix models, which includes VECH and Diagonal
VECH models introduced by Bollerslev et al. [20], the BEKK model intro-
duced by Engle and Kroner [43]. In section 4.3, we review the category of
Conditional Correlations models, which includes the Constant Conditional
Correlations GARCH model of Bollerslev [17], the Dynamic Conditional Corre-
lations GARCH model of Engle [40] and the Varying Conditional Correlations
GARCH model of Tse and Tsui [117]. In the section 4.4, we present the esti-
mation procedure of MGARCH models. Finally in section 4.5, we present the
application of multivariate GARCH models, where we use the Conditional Cor-
relations MGARCH models to analyse the volatility and co-volatilities between
the three variables just mentioned.

• In chapter 5, we analyse the assumption of normality of log-returns. Where we
introduce its use as well as cases where the data does not follow the normality
and its implications. After the introduction in section 5.1, the section 5.2
presents the procedures of five normality tests. Note that, since the tests
of normality were carried out in previous chapters, in this chapter will be
presented only some variants focused on the returns. Finally, in order to
illustrate how procedures work, in section 5.3, we present the application.

• In chapter 6, we present the main results obtained and discussed in the previous
chapters as conclusions of the research. We also consider some final remarks
related to the perspectives of this kind of investigations.
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Univariate GARCH modell ing

2.1 Univariate time series concepts

Following Kirchgässner and Wolters [69], a time series is defined as a set of quan-
titative observations collected in chronological order. Often takes over that the
observations are collected in equal intervals of time and the time is a discrete vari-
able. The frequency of reference observations in this chapter is daily. The basic
objective of the analysis of time series is usually to determine a model that describes
the pattern of the time series. This goal includes a description of the actual data,
explanation or modelling the data, forecasting or predict the future patterns and
control in case of deviations of the regular pattern.

In general, to model a specific time series, it is assumed that the residual com-
ponent does not influence the other components, that is, the trend, business cycle
and seasonal cycle components are not influenced by irregular component, there-
fore, in the classical time series analysis these components can be represented by
deterministic functions of the time series.

Because our focus in this chapter is modelling and discuss properties of GARCH
models, we present concepts related to univariate time series.

2.1.1 Stationary and ergodic time series

Let {yt}= {...yt−1,yt,yt+1, ...}, where the observations are associated with a time t,
thus a random variable called a time series.

According to Kirchgässner and Wolters [69], the concept of ergodicity means
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that the moments obtained from a sample of observations, when the sample size
increases considerably, they converge to the respective population moments. For
example, if we assume that, the population moments expectation E(yt) = µ and
variance var(yt) = σ2 are constant for every t. The yt process is called ergodic for
the mean if the time series average converges to the population average.

lim
T→∞

E


 1
T

T∑
t=1

yt−µ

2= 0 (2.1)

Similarly for variance ergodicity, if the sample variance provides a consistent
estimate for the second moment, then the process is said to be ergodic for the second
moment.

lim
T→∞

E


 1
T

T∑
t=1

(yt−µ)2−σ2

2= 0 (2.2)

More simply, a stochastic process is ergodic if is stationary. There are two kinds
of stationarity: the first is associated with the common distribution function that
does not change over time, which is said to be strictly stationarity. The second
form is that in which the process has periods of stationary, therefore, changes over
time, so we only consider weak stationarity or stationarity in the second moments.
Consequently, we define stationary for the corresponding moments of the stochastic
process {yt}:

1. Mean stationary: if E(yt) = µ is constant for all t.

2. Variance stationary: If var(yt) = E[(yt− µ)2] = σ2 is constant and finite for
all t.

3. Covariance stationary: if cov(yt,yt−j) = E[(yt−µ)(yt−j−µ)] = γj for all t and
any j is only a function of the time distance between the two time periods and
does not depend on the actual point in time t.

4. Weak stationarity: when it is mean and covariance stationary.

Because in many situations only assume weak stationarity, we most drop the word
weak, and we say stationary time series instead of covariance stationary time series.
Stationary time series have time invariant first and second moments. According
to Tsay[116], when the linear dependence between the values of the time series yt
and its past values yt−i is of interest, the concept of correlation is generalized to
autocorrelation. The parameter γj is called lag-j autocovariance of yt and a plot of
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ρj against j is called the autocorrelation function (ACF). For yt the ACF is defined
by

ρj = cov(yt,yt−j)√
var(yt)× var(yt−j)

= γj
γ0

(2.3)

Summarizing, a stationary time series is defined by its mean, variance and ACF.
Therefore, a stationary time series yt is ergodic if sample moments converge in
probability to population moments, that is, y p−→ µ, γ̂j

p−→ γj and ρ̂j
p−→ ρj .

2.1.2 Testing for autocorrelation

Following Baltagi [5] and Tsay [116], a time series yt is said a white noise if {yt} is
a sequence of independent and identically distributed (I.I.D) random variables with
finite mean, variance and zero autocorrelation, then ρj = 0 for j > 0. In particular,
if yt is normally distributed with mean zero and variance σ2 is said that the time
series is Gaussian white noise. For a white noise time series, all the ACF are zero,
except ρ0 = 1. In practice, if all sample ACF is close to zero, then the series is white
noise.

According to Zivot and Wang [123], in order to test autocorrelation we test if
the series yt is white noise. To test the null hypothesis of several autocorrelation are
zero, Box and Pierce [23], propose the Portmanteau statistic Q∗(m) = T

∑m
j=1 ρ̂

2
j for

the null hypothesis H0 : ∀ρj = 0 against the alternative that H1 : ∃ρj , 0 for some
j ∈ {1, ...,m}. Under the null hypothesis Q∗(m) is asymptotically χ2 distributed
with m degrees of freedom.

Ljung and Box [75] proposed the modified Q-statistic of Box and Pierce [23] to
increase the power of the test in finite samples.

Q(m) = T (T + 2)
m∑
j=1

ρ̂2
j

T − j
(2.4)

where T is the sample size.
We reject the null if Q(m)> χ2

α(m). Because most software statistic provide the
p-value of Q(m), the decision rule is then reject the null hypothesis if p-value is less
than or equal to the significance level α, that is, RH0 : p-value ≤ α.

2.1.3 Testing for normality

According to Tsay [116], Zivot and Wang [123], among various graphic procedures
used to check if I.I.D process follows Normal distribution, we can mention the Nor-
mal quantile-quantile plot, a scatter-plot of the standardized empirical quantiles of
yt against the quantiles of a standard random variable. If yt is normally distributed,
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then the quantiles will lie on a 45-degree line. In addition to the graphic represen-
tation, the Jarque and Bera [62] test is the most common formal statistic test for
normality used. The test is based on Skewness and Kurtosis of a random variable
that follows the Normal distribution. That is, with Skew = 0, Kurt = 3. The
statistic is computed by:

JB = T ×

 ŝkew2

6 + (k̂urt− 3)2

24

 (2.5)

where the sample Skewness and Kurtosis are given by:

ŝkew = 1
(T − 1)σ3

T∑
t=1

(yt−µ)3 and k̂urt= 1
(T − 1)σ̂4

T∑
t=1

(yt− µ̂)4

Under the null hypothesis that the series is normally distributed, the statistic
can be compared with a Chi-square distribution with 2 degrees freedom. The null
hypothesis of normality is rejected if the JB statistic exceeds a critical value from
χ2
α(2) or p-value is less than the significance level chosen. This and other tests used

to diagnose normality of data are described in Mulenga et al. [88].

2.1.4 Unit root nonstationary time series

In subsection 2.1.1, we focused on stationary time series. For some series, such as
interest rates, exchange rates, prices of an asset, the series tend to be nonstationary.
According to Zivot and Wang [123], since the stationary process has time invariant
moments, a nonstationary process must have some time dependent moments. The
most common forms of nonstationarity are caused by time dependent in mean and
variance.

Following Tsay [116], the nonstationary series is called unit root nonstationary
time series. The random-walk model, trend stationary and integrate processes are
examples of unit root nonstationary time series.

Random walk. If yt can be represent as yt = yt−1 + ut, where ut ∼ I.I.D(0,σ2),
then the series yt is a random walk process. If the process started at t=0, the initial
value is y0 = µ, then y1 = µ+u1, y2 = µ+u1+u2, ..., yt = µ+∑t

j=1uj with E(yt) = µ

and var(yt) = tσ2 since ut ∼ I.I.D(0,σ2). Therefore, the variance of yt is dependent
on t. This is a nonstationary time series, however, after first difference of yt we get
ut which is stationary, see Baltagi [5].

Trend stationary. According to Zivot and Wang [123], the series yt is a trend
stationary if it has the form yt = TD+ut, where TD are deterministic trend terms
(constant, trend, seasonal dummies, etc.), that depend on t and ut is stationary.
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Since ut is stationary yt never deviates too far away from TD. Consequently, yt
exhibits trend reversion. If TD were known, yt may be transformed to a stationary
process by subtracting the deterministic trend terms: ut = yt−TD.

Integrated process. The series yt is an integrated process of order 1, denoted
yt ∼ I(1), if it has the form yt = yt−1 +ut and the first difference of yt is stationary,
∆yt = ut. The I(1) processes are sometimes called difference stationary processes.
The order of integration is the minimum number of times the series needs to be
differenced to yield a stationary series.

Summarizing, a stationary time series is said integrated of order zero I(0). For the
process yt, if after second differences we get a stationary time series ∆2yt = (1−L)2yt,
such process is integrated of order 2. More generally, the process is I(d) if it can
be made stable by differencing d times, that is ∆dyt = (1−L)dyt. There are two
principal methods of detecting nonstationarity: (i) visual inspection of the time
series graph and its correlogram, (ii) formal statistics tests of unit roots.

There are large number of tests for unit root. For illustration, let us consider
a time series yt in the form: yt = µ + β1yt−1 + ut where ut = ρut−1 + ε. Unit
roots tests are based on testing the null hypothesis that H0 : ρ = 1 against the
alternative H1 : ρ < 1. They are called unit roots because under the null hypothesis
the characteristic polynomial has a root equal to unity.

Dickey and Fuller (DF) test. One commonly used test for unit roots is the
DF test. In its simplest form we can consider a Autoregressive (AR(1)) process
yt = ρyt−1 +ut or ∆yt = δyt−1 +ut where δ = ρ−1 and ut is I.I.D sequence of random
variables. Under the null hypothesis yt is nonstationary, consequently the standard
t - statistics does not follow t - distribution, not even asymptotically. To test the
null hypothesis it is used the statistic DFt = ρ̂

se(ρ̂) . We do not reject the null of
unit root at level α if the observed DFt statistic, is greater than the critical value
for DF test. For details of the test, see Dickey and Fuller [31] and Enders [38].

According to Zivot and Wang [123], the basic DF test is valid if yt is an AR(1)
model with white noise errors. However, many time series have a more compli-
cated dynamic structure that is not captured by a simple AR(1) model. Said and
Dickey [104], augmented the basic AR(1) unit root test to accommodate general
Autoregressive Moving Average (ARMA) models, and the test is referred as the
Augmented Dickey and Fuller (ADF) test. The ADF test, tests the null hypothesis
that a time series yt ∼ I(1) against the alternative that it is I(0), assuming the
dynamic in the data have an ARMA structure.

The procedure for ADF test is the same as for the DF test, but here it is applied
to the model ∆yt = µ+ δt+ ρyt−1 +∑p

i=1βi∆yt−i +ut, where µ is a constant, δ the
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coefficient on a time trend, ρ is the coefficient that indicate the presence of unit
root in the series, ∆yt−i are used to approximate de ARMA structure of the errors
and p the lag order of the AR process. Imposing the constraints µ = 0 and δ = 0
correspond to modelling a random walk and using the constraint δ = 0 corresponds
to modelling a random walk with a drift. By including lags of the order p the ADF
test formulation allows for higher-order autoregressive process. The ADF t-statistic
and normalized bias statistic based on the Ordinary Least Squares (OLS) estimates
are given by:

ADFt = tρ = ρ̂− 1
se(ρ̂) or ADFρ = T (ρ̂− 1)

1− β̂1− ...− β̂p
(2.6)

An important practical issue for the implementation of the ADF test is the
specification of the lag length p. If p is too small then the remaining serial correlation
in the errors will bias the test. If p is too large then the power of the test will suffer.
Ng and Perron [91], suggest the procedure to set an upper bound pmax for p, estimate
the ADF test regression with p = pmax. If the absolute value of the t-statistic is
greater than 1.6 then set p= pmax and perform the unit root test. Otherwise, reduce
the lag length by one and repeat the process.

Phillips and Perron [99], developed a number of unit root tests that have become
popular in the analysis of financial times series. The Phillips-Perron (PP) unit
root tests differ from ADF tests mainly in how they deal with serial correlation and
heteroskedasticity in the errors. Where the ADF tests use a parametric autoregressive
to approximate the ARMA structure of the errors in the test regression, the PP
tests ignore any serial correlation in the test regression. That is, the PP tests are
not parametric. One advantage of the PP tests over ADF tests is that the PP
tests are robust to general forms of heteroskedasticity in the error term ut. Another
advantage is that the user of bandwidth does not have to specify a lag length for
the test regression.

The ADF and PP tests are asymptotically equivalent but may differ substantially
in finite samples due to the different ways in which they correct for serial correlation
in the test regression. In other hand the ADF and PP unit root tests are for the null
hypothesis that a time series yt is I(1). Stationarity tests, are for the null hypothesis
that yt is stationary I(0). The most commonly used stationarity test is KPSS test,
proposed by Kwiatkowski et al.[71]1.

The KPSS test, in contrary to most unit root tests, the presence of a root
unit is not the null hypothesis but the alternative. Additionally, in the KPSS test,

1KPSS due to authors Kwiatkowski, Phillips, Schmidt and Shin.
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the absence of a root unit is not a proof of stationarity but, by design, of trend-
stationarity. A major disadvantage for the KPSS test is that it has a high rate of
Type I errors, that is, tends to reject the null hypothesis too often. If attempts
are made to control these errors (by having larger p-values), then that negatively
impacts the test’s power. One way to deal with the potential for high Type I errors
is to combine the KPSS test with an ADF test. If the result from both tests suggests
that the time series in stationary, then it probably is.

2.2 Conditional heteroskedasticity models

In Autoregressive Moving Average models of Box and Jenkins [22], the analysis
is concentrated in modelling and predicting the conditional mean equation, where
residuals are assumed uncorrelated and homoskedastic, and is rarely concerned with
the conditional variance of a time series.

According to Brooks [27], stylized facts of financial times series are: Serial depen-
dence presented in the data; volatility clustering, that is, small or large shocks are
followed by small or large shocks; heavy tailed when the distribution of returns shows
more leptokurtosis effect than the Normal distribution; leverage effects where the
volatility tends to be large for the price falls than for the price rises when the magni-
tude of the price rise and fall is identical; long memory in volatility; spillover effects
which refers to positive or negative effects of those who are not directly involved in
it.

According to Tsay [116], volatility has became a very important concept in
financial analysis. The term, volatility indicate how much and how quickly the value
of an market sector changes, thus, is measured by standard deviation. Most financial
time series such has foreign exchange rate and stock prices as well as inflation rates
may exhibit some volatility which varies over time, which suggests that their variance
may be heteroskedasticity.

Analysis andmodelling volatility in financial time series became the object of more
interest since the introduction of the Autoregressive conditional heteroskedasticity
(ARCH) model in the seminal paper of Engle [39]. Subsequently, were developed
several univariate models from class ARCH and GARCH models. For example
the Exponential GARCH of Nelson [90], the Threshold GARCH of Zakoian [121],
the Asymmetric Power ARCH (APARCH) of Ding et al. [34], with the objective
of studying the volatility and other characteristics of financial times series. Each
model was developed in order to capture a particular characteristic such as volatility
clustering, heavy tailed, leverage effects, asymmetry and high persistence in second
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moments, etc. Details of the specifications and estimation procedure can be found in
Bera and Higgins [7], Bollerslev et al. [21], Tsay [116], Zivot and Wang [123], among
others.

2.2.1 The basic ARCH model

Let rt denote a stationary times series such as financial returns, then rt can be
expressed as its mean µ, and an autoregressive part to accounting for time persistence
plus a white noise ut if there is no significant autocorrelation in rt itself, which is
called AR(1) process, rt = µ+φ1rt−1+ut. To allow for conditional heteroskedasticity,
assume that vart−1(ut) = σ2

t , with vart−1(.) denoting the variance conditional on
information at time t−1, and is modelled in the following way: σ2

t = ω+α1u2
t−1+...+

αpu
2
t−p. Since E(ut) = 0 and vart−1(ut) = Et−1(u2

t ) = σ2
t , the variance of residuals

can be rewritten as u2
t = ω+α1u2

t−1+...+αpu2
t−p, which represents an AR(p) process

for squared residuals u2
t .

The joint AR(1) process for returns and AR(p) process for squared residuals,
is known as the Autoregressive conditional heteroskedasticity model of Engle [39].
Following Zivot [122], the basic idea of ARCH models is that, the shock of ut of an
asset return is serially uncorrelated but dependent, and the dependence of ut can
be described by a simple quadratic function of its lagged values, which is usually
referred to as the ARCH(p) model. An alternative and complete formulation of the
ARCH model is:

rt = µ+φ1rt−1 +ut

ut = ztσt where zt ∼N(0,1)

σ2
t = ω+α1u

2
t−1 + ...+αpu

2
t−p (2.7)

where zt is a sequence of random variables with mean zero and variance one, ω > 0
and αi ≥ 0 for i > 0, to ensure that the unconditional variance of ut exists. In practice
the standardized residuals zt = ut/σt is often assumed to follow the standard Normal
distribution, standardized t-distribution or a Generalized error distribution.

Properties of ARCH(1) model

Without loss of generality, let a ARCH(1) model be represented by ut = ztσt =
zt
√
ω+α1u2

t−1, where {zt}∞t=0 is a sequence of I.I.D random variables with mean
zero and variance one, that is zt ∼ N(0,1). ARCH(1) model has the following
properties.

Property 1. The ut has zero mean.
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Proof. As σt is Ft−1 mensurable and zt is independent of Ft−1 and still E(zt) = 0,
we will have:

E(ut) = E(Et−1(ut)) = E(Et−1(ztσt))

= E(σtEt−1(zt)) = E(σtE(zt))

= E(σt)E(zt) = 0, since E(zt) = 0

Property 2. The conditional variance is given by σ2
t = ω+α1u2

t−1.
Proof. As E(ut) = 0, the conditional variance of ut is:

vart−1(ut) = Et−1(u2
t ) = Et−1[z2

t (ω+α1u
2
t−1)]

= Et−1(z2
t )(ω+α1u

2
t−1)

= E(z2
t )(ω+α1u

2
t−1)

= ω+α1u
2
t−1 = σ2

t , since E(z2
t ) = var(zt) = 1

Property 3. The unconditional variance is σ2 = ω/(1−α1), which only exists if
ω > 0 and |α1|< 1.

Proof. As ut is stationary then E(u2
t ) = E(u2

t−1) = σ2, also we have E(ut) = 0,
σ2
t = ω + α1u2

t−1 is Ft−1 mensurable, zt is independent of Ft−1 and still E(z2
t ) =

var(zt) = 1, we have:

var(ut) = E(u2
t ) = E[Et−1(u2

t )] = E[Et−1(z2
t )(ω+α1u

2
t−1)]

= E[E(z2
t )(ω+α1u

2
t−1)]

= E(ω+α1u
2
t−1) = ω+α1E(u2

t−1)

Therefore, we have σ2 = ω + α1σ2 and σ2 = ω/(1− α1). Since the variance of ut
must be positive, we require 0≤ α1 < 1.

Property 4. The auto-covariances are zero. Note that, this properties seems
plausible enough for ARCH(1) process, but less for higher order processes.

Proof.

Et−1(utut−1) = E[ut−1Et−1(ut)]

= E
[
ut−1

√
ω+α1u2

t−1Et−1(zt)
]

= E
[
ut−1

√
ω+α1u2

t−1E(zt)
]

= E
[
ut−1

√
ω+α1u2

t−1
]
E(zt) = 0, since E(zt) = 0

Property 5. Regarding kurtosis, Bera and Higgins [7] show that the process has

a heavier tail than the Normal distribution, that is E(u4
t )

var(ut)2 = 3
( 1−α2

1
1− 3α2

1

)
> 3.
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Proof. As ut|Ft−1 ∼N(0,σ2
t ), then Et−1(u4

t ) = 3var2
t−1(ut), and we have:

E(u4
t ) = E[Et−1(u4

t )]

= E[3var2
t−1(ut)]

= E[3(σ2
t )2] = 3E[(ω+α1u

2
t−1)2]

= 3[ω2 + 2ωα1E(u2
t−1) +α2

1E(u4
t−1)]

If ut is fourth - order stationary with m4 = E(u4
t ) then we have:

m4 = 3(ω2 + 2ωα1σ2 +α2
1m4) = 3ω2

(
1 + 2 α1

1−α1

)
+ 3α2

1m4, from where we get

m4 = 3ω2(1 +α1)
(1−α1)(1− 3α2

1) .

Following Tsay [116], this results has two important implications (a) since m4 >

0, α1 must satisfy the condition 1 − 3α2
1 > 0; that is 0 ≤ α2

1 ≤ 1
3 and (b) The

unconditional kurtosis of ut is: E(u4
t )

[var(ut)]2 = 3 ω2(1+α1)
(1−α1)(1−3α2

1) ×
(1−α1)2

ω2 = 3 1−α2
1

1−3α2
1
> 3.

Thus, the excess kurtosis of ut is positive and the tail distribution of ut is heavier
than that of a Normal distribution. That is, the shock ut on ARCH(1) model are
more enabled to produce outliers than a Gaussian white noise series.

According to Brooks [27] and Tsay [116], the ARCH model provides a framework
for the analysis and development of times series model of volatility. However, ARCH
models have some weaknesses:

1. The assumption assumed by the model that the negative and positive shocks
have the same effects is not realistic, that is not well sustained because in
practice it is known that the shocks have different effects, especially in financial
time series.

2. For series with finite fourth moments, the value of α2
1 of an ARCH(1) model

must be between [0;1/3]. That is ARCH(1) is more restrictive.

3. The ARCH models, does not indicate the source of variation of financial time
series, only provides the procedures to describe the behavior of the conditional
variance associated with those series.

4. ARCH models at some point overestimate the parameters as they respond
slowly to large shocks, especially when they are isolated shocks to the return
series.

2.2.2 The Generalized ARCH model

According to Bera and Higgins [7], Brooks [27] and Tsay [116], in many applications
of the linear ARCH(p) model the number of lags required to capture all of the
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dependence on the conditional variance, might be very large. To avoid this problem,
Bollerslev [15] and Taylor [115] developed independently a useful extension of the
conditional variance function in equation 2.7, which is known as the Generalized
ARCH or GARCH(p,q) model, where p is the number of lags for ARCH and q the
number of lags for GARCH.

σ2
t = ω+

p∑
i=1

αiu
2
t−i +

q∑
j=1

βjσ
2
t−j ; ut = ztσt (2.8)

where zt ∼ N(0,1) and the restrictions ω > 0, αi ≥ 0 and βj ≥ 0 are imposed
to ensure that the conditional variance is strictly positive. The GARCH model
allows the conditional variance to be dependent upon previous own lags. Note that,
specification a parsimonious GARCH (p,q) is not easy, in most applications only
lower order are used, say GARCH(1,1), GARCH(2,1) or GARCH(1,2). The volatility
equation in the simple case, GARCH(1,1) is:

σ2
t = ω+α1u

2
t−1 + β1σ

2
t−1 and 0≤ α1,β1 ≤ 1 (2.9)

For GARCH(1,1), ut is covariance stationary if and only if α1+β1 < 1. According
to Brooks [27] in the equation 2.9, the conditional variance σ2

t is one period ahead
estimate for the variance based on any past information thought relevant. That is,
the fitted variance σ2

t as a weighted function of a long term average value dependent
on ω, information about volatility during the previous period (α1u2

t−1) and the fitted
variance of the model in the previous period (β1σ2

t−1).

Properties of GARCH model

The GARCH(p,q) model in equation 2.8 can be written in the following form:
σ2
t = ω+α(L)u2

t−1+β(L)σ2
t−1, where α(L) and β(L) are polynomials with no common

roots and that the roots of the polynomial β(x) = 1 lie outside the unit circle, this
positivity constraint is satisfied if and only if all the coefficients in the infinite power
series expansion for α(x)/(1− β(x)) are non-negative.

Property 1. ARMA representation of GARCH model. Just as an ARCH model
can be expressed as an AR model of squared residuals, a GARCH model can be
expressed as an ARMA model of squared residuals. Let consider the GARCH(1,1)
model in equation 2.9. Since Et−1(u2

t ) = σ2
t , the equation 2.9 can be rewritten as:

u2
t = ω+(α1 +β1)u2

t−1 +εt−β1εt−1, which is an ARMA(1,1) with εt = u2
t −Et−1(u2

t )
being the white noise process. The condition for covariance stationary is α1 +β1 < 1
and the unconditional variance is σ2

t = ω

1− (α1 + β1) .

Property 2. Volatility clustering. Let’s consider the GARCH(1,1) model in equa-
tion 2.9. Usually β1 is around 0.9 for many weekly or daily financial time series.

17



www.manaraa.com

CHAPTER 2. UNIVARIATE GARCH MODELLING

Following Zivot and Wang [123], this means that, large values of σ2
t−1 will be followed

by large value of σ2
t , and small values of σ2

t−1 will be followed by small values of σ2
t .

This process, is called volatility clustering in financial time series.
Property 3. The GARCH model have fat tails. In the financial time series, it is

known that the distribution of many high frequency series usually has fatter tails
than a Normal distribution. That is, large changes are more often to occur than a
Normal distribution would imply. Assuming the fourth order moments exists, the
kurtosis implied by a GARCH(1,1) process is greater than 3, the kurtosis of a Normal
distribution.

Property 4. Temporal aggregation produces convergence to normality. Conver-
gence to normality under temporal aggregation is a key feature of many economic
data and is also a property of covariance stationary GARCH process. According
to Diebold and Lopez [32], the key is that the law-frequency change is simply the
sum of corresponding high-frequency changes. Thus, if a Gaussian central limit
theorem can be invoked for sums of GARCH processes, convergence to normality
under temporal aggregation can be assumed.

2.3 Extensions of ARCH and GARCH models

Following Brooks [27] and Tsay [116], the basic GARCH model provides a reasonably
good model for analysing financial time series and estimating conditional volatility.
However, there are some aspects which are not captured, since only squared residuals
are used in the conditional variance equation. Signs and size bias of the residuals,
asymmetry and leverage effects of the shocks are not taken into account. In this
section 2.3, we present some variants of GARCH models that take account of some
characteristics exhibited by financial times series.

2.3.1 The Integrated GARCH model

If the AR polynomial of the GARCH representation has a unit root, then we have
an Integrated GARCH (IGARCH) model, introduced by Engle and Bollerslev [41].
Thus, the GARCH process is integrated of order one if 1−α(L)− β(L) = 0 has a
root on the unit circle.

Similar to Autoregressive Integrated Moving Average (ARIMA) models, a key
feature of IGARCH is that of the impact of past squared shocks εt−i = u2

t−i− σ2
t−i

for i > 0 is persistent. An IGARCH(1,1) model can be written as:

σ2
t = ω+ (1− β1)u2

t−1 + β1σ
2
t−1 and ut = ztσt (2.10)
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where zt ∼N(0,1) and 0< β1 < 1.
Following Diebold and Lopez [32], the IGARCH process is potentially important

because GARCH roots near to unity are common in high - frequency financial data.
According to Tsay [116], the IGARCH process might be caused by occasional level
shifts in volatility or to misspecification of the conditional variance function.

2.3.2 The Exponential GARCH model

According to Diebold and Lopez [32], one extension of the GARCH model is Exponen-
tial GARCH (EGARCH) model proposed by Nelson [90], which implies that the lever-
age effects are exponential. For the stationary return series rt, the EGARCH(p,q)
model of Nelson [90], is defined as:

ln(σ2
t ) = ω+

p∑
i=1

αi

∣∣∣∣ut−iσt−i

∣∣∣∣−
√

2
π

+
p∑
i=1

γi

(
ut−i
σt−i

)
+

q∑
j=1

βjln(σ2
t−j) (2.11)

where the term ut−i
σt−i

= zt−i is the standardized residual and |zt−i| the corresponding
absolute value, ω is constant, the αi parameters account for the magnitude or size of
news effect, the βj parameters capture time persistence in conditional volatility and
γi measures the asymmetric effects of news, implying the so-called leverage effect.

The EGARCH(1,1) model can be written as follows,

ln(σ2
t ) = ω+α1

∣∣∣∣ut−1
σt−1

∣∣∣∣−
√

2
π

+ γ1

(
ut−1
σt−1

)
+ β1ln(σ2

t−1) (2.12)

Typically γ1 is negative, positive return shocks generate less volatility than negative
return shocks, assuming other factors to remain unchanged. When γ1 = 0 good news
and bad news of the same magnitude have the same effect on volatility, that is no
leverage effect exists. The impact is asymmetric when γ1 , 0. In the usual case
when γ1 < 0, the magnitude of the shock can be conditioned on the sign of zt−1. For
bad news (zt−1 < 0), the shock coefficient is measured by the sum α1 + γ1, while for
good news (zt−1 > 0), the magnitude is α1− γ1.

EGARCH capture the asymmetric reaction of variance towards positive and
negative shocks in economy. Thus, the model often provides the best fits when
compared to the standard GARCH model. The presence of the asymmetric term is
largely responsible for the best fit since many asset return series exhibits leverage
effects and the use of standardized shocks in the evolution of the log-variance tend
to decrease the effect of large shocks.

According to Hentschel [59] and Nelson [90], due to the volatility specification in
terms of the logarithmic transformation, there are no restrictions on the parameters
to ensure a positive variance. A sufficient condition for stationarity is β1 < 1.
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2.3.3 The Threshold GARCH model

The Threshold GARCH (TGARCH) model proposed by Zakoian [121], extends
equation 2.8 to allow the conditional standard deviation to depend upon the sign of
the lagged innovations. Given a stationary return rt, the general specification of the
TGARCH (p,q) model is:

σt = ω+
p∑
i=1

αi
∣∣∣ut−i∣∣∣+ p∑

i=1
γi
∣∣∣ut−i∣∣∣dt−i(ut−i < 0) +

q∑
j=1

βjσt−j (2.13)

where dt−i is an indicator function that takes the value 1 if ut−i < 0 and zero
otherwise. In particular, the TGARCH(1,1) model maybe expressed as:

σt = ω+α1
∣∣∣ut−1

∣∣∣+ γ1
∣∣∣ut−1

∣∣∣dt−1(ut−1 < 0) + β1σt−1

That is, the conditional standard deviation σt, depends on whether ut−1 is above
or below the threshold value of zero. When ut−1 > 0 (good news), the total effects
are given by α1ut−1, when ut−1 < 0 (bad news), the total effects are given by
(α1 + γ1)ut−1. Following Ding et al. [34] and Hentschel [59], in order to guarantee
the positive of σt, it is sufficient that ω > 0, α1 ≥ 0 and γ1 < α1, but none is
needed to ensure a positive variance. However, model stationary requires γ2

1 <

1−α2
1−β2

1 −2α1β1E(|zt|), where E(|zt|) =
√

2/π, for the Gaussian distribution. So
we would expect γ1 > 0 when bad news have larger impacts. Due to the Zakoian [121],
the TGARCH model is sometimes referred to as ZARCH or ZGARCH model.

2.3.4 The GJR - GARCH model

Another model which account the leverage effect is the GJR-GARCHmodel, proposed
by Glosten et al. [52]. The basic idea of the model is closed to the TGARCH model,
however, here the model works with conditional variance instead of conditional
standard deviation. The generalized form of the GJR-GARCH (p,q) model is given
in the following form:

σ2
t = ω+

p∑
i=1

αiu
2
t−i +

p∑
i=1

γiu
2
t−idt−i(ut−i < 0) +

q∑
j=1

βjσ
2
t−j (2.14)

where dt−i is an indicator function that takes the value 1 if ut−i < 0 and zero
otherwise.

The GJR-GARCH(1,1) model is σ2
t = ω+α1u2

t−1+γ1u2
t−1dt−1(ut−1 < 0)+β1σ2

t−1,
where the conditional volatility σ2

t is positive when parameters satisfy ω > 0, α1 ≥ 0,
α1+γ1 ≥ 0 and β1 ≥ 0, and under normality a GJR-GARCH(1,1) model is covariance
stationary if the parameter restrictions are satisfied and α1 + 1

2γ1 + β1 < 1.
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The GJR-GARCH(1,1) model displays asymmetry when γ1 , 0, in the sense that
positive and negative shocks of equal magnitude have different effect on conditional
volatility. Therefore, asymmetry exists if γ1 > 0. The conditions for leverage effects
are α1 < 0 and α1 + γ1 > 0.

2.3.5 The Asymmetric Power ARCH model

The Asymmetric Power ARCH (APARCH) or APGARCH model of Ding et al. [34],
parametrizes the non-linearity in the conditional variance using the power δ. This
form provides greater flexibility in modelling the memory of volatility while remaining
parsimonious. The model can well express the fat tails, excess kurtosis and leverage
effects. The general structure of the APGARCH(p,q) process is as follows:

σδt = ω+
p∑
i=1

αi

(
|ut−i| − γiut−i

)δ
+

q∑
j=1

βjσ
δ
t−j (2.15)

According to Ding et al. [34] and Hentschel [59], the usual restrictions on AP-
GARCH parameters are that δ > 0, ω > 0, αi ≥ 0, βj ≥ 0 and −1 < γi < 1. Note
that γi reflects the leverage effects. For γi > 0 the volatility tends to increase more
when returns are negative, as compared to positive returns of the same magnitude.

The residuals ut follows APGARCH(1,1) model, if we can write ut = ztσt where
zt ∼N(0,1) and σδt = ω+α1

(
|ut−1| − γ1ut−1

)δ
+ β1σδt−1.

The Generalized Asymmetric Power ARCH (APGARCH) model includes seven
other ARCH extensions as special cases. The ARCH of Engle [39] when δ = 2, γ = 0
and β = 0, the GARCH of Bollerslev [15] when δ = 2, and γ = 0, the TS-GARCH of
Taylor [115] or Schwert [105] when δ = 1 and γ = 0, the GJR - GARCH of Glosten et
al. [52] when δ = 2, the TARCH of Zakoian [121] when δ = 1, the NARCH of Higgins
and Bera [60] when γ = 0 and β = 0 and the log-ARCH of Geweke [51], Milhöj [84]
and Pantula [96] when δ→ 0. For details see Ding et al. [34].

In the literature, there is a wide variety of ARCH models specifications, so an
exhaustive list can be found in Bollerslev [18].

2.3.6 The GARCH-in-mean model

Engle et al. [46], introduce the GARCH-in-mean (GARCH-M) model to modelling
the relationship between risk and return when risk measured by the conditional
variance, varies. The GARCH-M model is useful in financial applications when the
conditional variance is related to the mean. In order to model such relations its use
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the GARCH-M model. A simple GARCH(1,1)-M model can be written as:

rt = µ+ θσt +ut ; ut = ztσt

σ2
t = ω+α1u

2
t−1 + β1σ

2
t−1 (2.16)

where the parameter θ is called the risk premium. If θ > 0 that indicates the returns is
positively related to its volatility. The model characterizes the evolution of the mean
and the variance of a time series simultaneously. Other specifications of risk premium
have also been used in the literature, such rt = µ+θσ2

t +ut and rt = µ+θln(σ2
t )+ut.

2.4 Estimation of GARCH models

2.4.1 Testing residual behavior

In addition to the Autocorrelation, Normality and Augmented Dickey-Fuller tests
discussed in section 2.1, before an ARCH model is fitted it is necessary to check
whether the residuals present evidence of ARCH effects and how they behave com-
pared with the Normal distribution. It is also important to check the adequacy of
the GARCH model specification after estimation. In this subsection, we present
some preliminary test for the data series.

Testing for ARCH effects. According to Zivot and Wang [123], before estimating
a full ARCH model for the financial time series, it is usually good practice to test
for the presence of ARCH effect in the residuals. If there are no ARCH effects in
the residuals, then the ARCH model is unnecessary and misspecified.

There are some formal methods to test for ARCH effects, such as McLeod-Li test,
proposed by McLeod and Li [83], the Lagrange Multiplier test proposed by Engle [39],
the BDS test, suggested by Broock et al. [26], etc. We describe the Lagrange
Multiplier (LM) test, which is based on the residuals from linear regression rt =
µ+φ1rt−1+ut and on auxiliary regression with p lags û2

t = ω+α1û2
t−1+...+αpû2

t−p+εt.
Under the null hypothesis, that there is no ARCH effects in squared residuals,
H0 : α1 = ... = αp = 0, The statistic is LM = TR2, where T is the sample size
and R is the sample multiple correlation coefficient from linear regression. The test
statistic is asymptotically distributed as Chi-square with p degrees of freedom. We
reject the null hypothesis if p-value is less than the significance level chosen α or if
LM ≥ χ2

α(p).
Testing for asymmetric effects. In the basic GARCH model 2.8, since only

squared residuals u2
t−i are used in conditional variance equation, the signs of the

residuals or shocks have no effect on conditional volatility. However, a stylized fact
of financial volatility is that bad news tends to have a larger impact on volatility
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than good news. Based on these facts, the asymmetric news impact on volatility is
commonly referred to as the leverage effect.

Follows Zivot [122], a simple diagnostic for possible asymmetric leverage effects
is the sample correlation between squared returns and lagged return, corr(r2

t , rt−1).
A negative value of this correlation provides evidence for potential leverage effects.
In addition to the asymmetric test, Engle and Ng [44], proposed a sign and size bias
tests, that is, a negative size bias (NSB), positive size bias (PSB) and joint sign bias
(SB) test for asymmetric of volatility processes. The tests are usually applied to the
residuals from the asymmetric GARCH models. The sign and size bias test is based
on the significance of the coefficient of the following regression:

u2
t = φ0 +φ1S

−
t−1 +φ2S

−
t−1ut−1 +φ3S

+
t−1ut−1 + εt (2.17)

where S−t−1 = 1 if ut−1 < 0 and 0 otherwise, and S+
t−1 = 1−S−t−1.

The SB, NSB and PSB statistics are t-ratios, they follow a standard Normal
distribution asymptotically and εt ∼ N(0,1). The null hypothesis (H0 : φ1 = φ2 =
φ3 = 0), can be evaluated by computing TR2 and the test-statistic has an asymptotic
χ2 distribution with 3 degrees of freedom, where T is the sample size and R is
the sample multiple correlation coefficient. A significant value of φ1 indicates the
existence of sign bias where positive and negative changes have asymmetric effects
on conditional volatility compared to the symmetric GARCH model. On the other
hand, the significance of φ2 and φ3 indicate not only sign bias but also if the size of
the change is significant.

The presence of leverage effects among the asymmetric models is also examined
by testing the null hypothesis that γ = 0 at a significance level. Rejection of the null
hypothesis implies the presence of leverage effects in the returns.

2.4.2 Method of maximum likelihood estimation

If an ARCH effect is found to be significant, the partial autocorrelation function
(PACF) of u2

t can be used to determine the ARCH order. For an ARCH(p) model,
the lag-p sample PACF should not be zero, but α̂i should be close to zero for all
i > p. Making use of this fact to determine the order p, we can consider the following
properties: (i) α̂p converges to αp as the sample size T goes to infinity. (ii) α̂l
converges to zero for all l > p and (iii) the asymptotic variance of α̂t is 1/T for l >
p. These results says that, for ARCH(p) series, the sample PACF cuts off at lag-p.
Using the plot of PACF, we select p when the lags of sample PACF appear to be
large than the approximate two standard error limits ±1.96/

√
T .

23



www.manaraa.com

CHAPTER 2. UNIVARIATE GARCH MODELLING

The method of maximum likelihood estimation (MLE) is the most common ap-
proach used to estimate the vector of unknown parameters θ of conditional volatility
models. According to Lütkepohl and Krätzig [78], the conditions for the inference
in maximum likelihood (ML) estimator to hold require that the parameters esti-
mates are maximum likelihood estimates which in turn both the likelihood used
in estimation to be correct as well as the specification for the conditional variance.
When one specification is used for estimation for example Normal distribution but
the data follow a different conditional distribution, these estimators are known as
Quase Maximum Likelihood Estimator (QMLE), and the estimated parameters are
asymptotically Normal but with a different covariance.

There are three conditional likelihood functions used in ARCH or GARCH esti-
mation. The conditional likelihood under the normality assumption of standardized
residuals z ∼ N(0,1), under Student t-distribution, when standardized residual
follows a heavy-tailed distribution and under specific probability density function,
when zt may assume a generalized error distribution (GED) with probability density
function f(x).

a) Under normality assumption. Under regularity conditions, the normal likeli-
hood function for the sequence random variables uT−1 containing u0,u1, ...,uT−1 of
an GARCH process is:

f(θ|u1, ...,uT−1) =
T∏
t=1

(2πσ2
t )−

1
2 exp

(
− u2

t

2σ2
t

)
(2.18)

and the normal log-likelihood function is defined as:

logL(θ|u1, ...,uT−1) =−T2 log(2π)− 1
2

T∑
t=1

log(σ2
t )−

1
2

T∑
t=1

u2
t

σ2
t

(2.19)

According to Tsay [116] and Zivot [122], essentially, the MLE method works by
finding the most likely values of the parameters given the historical data and the
estimation can be done in the following ways.

1. Specify the appropriate equations for conditional mean and variance.

2. Under the normality assumption and since the term log(2π) does note involve
any parameter, the log-likelihood function become:

logL=−1
2

T∑
t=1

log(σ2
t )−

1
2

T∑
t=1

u2
t

σ2
t

(2.20)

3. The maximum likelihood estimation is the specification parameter vector θ
that maximizes the log-likelihood function.
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There are several practical issues to consider in the maximization of logL. Start-
ing values for the model parameters need to be chosen. Once the log-likelihood is
initialized, it can be maximized using numerical optimization techniques such as
Newton-Raphson, BHHH, BFGS and DFP. The most common method is based on
a Newton-Raphson iterative optimization routine of the form:

θ̂i = θ̂i−1 +φ

 T∑
i=1

∂logLt
∂θ

∂logLt
∂θ′

∣∣∣∣∣
θ=θ̂i−1

−1 T∑
i=1

∂logLt
∂θ

∣∣∣∣∣
θ=θ̂−1

 (2.21)

with H(θ̂i) =
T∑
i=1

∂logLt
∂θ

∂logLt
∂θ′

and S(θ̂i) =
T∑
i=1

∂logLt
∂θ

where θi denotes the vector of estimated parameters at iteration i, φ is a scalar used
to modify step-length, S(θ̂i) and H(θ̂i) denotes the Gradient or Score vector and
Hessian matrix of log-likelihood at iteration i, respectively.

The step-length parameter φi is chosen such that log(θi)≥ log(θi−1). For ARCH
models, the BHHH algorithm (Berndt et al. [9])2, is often used to approximate the
Hessian matrix using only first derivative information.

According to Brooks [27], by default, many software already has initial values of
zero for the conditional variance parameter. Note that, in practice when necessary
it is possible to initialize with non-zero values. The specification of the stopping
condition depends on the author and can be chosen in two ways: using a convergence
criterion associated with a limit value that maximizes logL or by a fixed value that
must be reached. In either case, iterations only ends when the difference between
two consecutive coefficients estimates is minimum possible. For some software when
a stop condition is not indicated, the default value 0.001 is assumed as the condition
for stop search the optimal solution. That is, when the difference between two
consecutive estimates for all parameters is on the order of 0.1%, assumes that the
optimal solution is achieved and the search process ends.

Follows Davidson [30], under regularity conditions the maximum likelihood es-
timator θ̂ converges at rate

√
T and is asymptotically normally distributed, that

is:
√
T (θ̂− θ) d−→N(0,Σ−1), where Σ is the expectation of the outer product of the

scores of it logL(θ),

Σ = 1
T

T∑
i=1

E

[
∂logLt
∂θ

∂logLt
∂θ′

]
(2.22)

The log-likelihood function in equation 2.19, is determined under the assumption
of conditional normality of innovations presented in equation 2.8, that is zt ∼N(0,1).
Ignoring non normality of innovations zt we get a misspecification of the log-likelihood

2BHHH due to Berndt, Hall, Hall and Hausman.
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function. Maximizing the misspecified Gaussian log-likelihood function is justified by
Quasi Maximum Likelihood (QML) theory. Analytical expressions for the derivatives
necessary to implementing the BHHH algorithm or QML inference are given in
Bollerslev [15] for the general case of ARMA(p,q) processes with GARCH(q,p) error
terms.

b) Under Student t-distribution. In order to account the fat-tailed error distribu-
tion, Bollerslev [16], proposed fitting a GARCH model with a Student t-distribution
for standardized residual. If a random variable ut has a Student t-distribution with
v degrees of freedom, then var(ut) = v/(v − 2) for v > 2, and using the relation
zt = ut/

√
v/(v− 2), the probability density function (pdf) of standardized residual

zt is given by:

f(zt|v) = Γ ((v+ 1)/2)
Γ (v/2)

√
(v− 2)π

(
1 + z2

t

(v− 2)

)−(v+1)/2
(2.23)

where Γ (v) =
∫∞
0 e−zzv−1dz is Gamma function and v is parameter that measures

the tail thickness. According to Tsay [116], the value of degrees of freedom v varies
between 3 and 6, when its chosen a priori.

Using ut = ztσt, the conditional log-likelihood function of ut for specified v is:

logL(ut|v) = T
[
logΓ

(v+ 1
2

)
− logΓ

(v
2
)
− 1

2 log(π(v− 2))
]

−1
2

T∑
t=1

[
log(σ2

t ) + (1 + v)log
(
1 + u2

t

σ2
t (v− 2)

)]
(2.24)

c) Under generalized error distribution. If the standardized residuals follow a
GED, Nelson [90], proposed to use this distribution to capture the fat tails usually
observed in the distribution of financial time series. If zt has a GED with mean zero
and variance 1, the probability density function of zt is given by:

f(zt|v) =
v× exp

(
− (1/2)|zt/λ|v

)
λ× 2((v+1)/v)Γ (1/v)

where λ=
[2(−2/v)Γ (1/v)

Γ (3/v)

]1/2
(2.25)

The parameter v is positive, governing the thickness of the tail behavior of the
distribution. When v = 2 the distribution reduces to a Gaussian if v < 2 the density
has ticks tails than the normal density when v > 2 the density has thinner tails
than the normal. When v = 1 the density reduce to the pdf of double exponential
distribution.
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2.4.3 Model diagnostic, forecasting and evaluation

Model diagnostic

Following Diebold and Lopez [32], after fitting the volatility equation it is necessary
to carefully check whether the estimated model is the most appropriate, if necessary
the model can be refined by removing the parameters that are not statistically
significant.

The most commonly used test of significance for each parameter individually is
the called t-Student test, with the null hypothesis. H0 : β = 0 against H1 : β , 0.
The test statistic is:

t= β̂

Se(β̂)
(2.26)

The test follows a t-distribution with T-p degrees of freedom, where T is the
number of observations and p the number of estimated parameters. The null hy-
pothesis is rejected if β̂ is too far from zero, that is, if observed statistic in absolute
value is greater than the critical value.

The test for the whole model or joint test for significance of all coefficients except
the intercept is based on the F -distribution with the null hypothesis H0 : ∀βi = 0
for i= 1, ...,p against the alternative H1 : ∃βi , 0. The F - statistic is given by:

F = (SSRr−SSRu)/m
SSRu/(T − p)

∼ F (m,T − p) (2.27)

where SSRu and SSRr indicate the sum of squared of residuals for unrestricted and
restricted models, T the sample size, p the number of parameters of the unrestricted
model and m is the number of parameter restrictions. The null hypothesis is rejected
if F -statistic is greater than the correspondent critical value.

By default, for parameter diagnostic is showing the standard errors, p-value and
t-statistic from the output of statistical packages.

Forecasting volatility

According to Zivot and Wang [123], one of the objectives of analysing conditional
volatility models is to make predictions of the future value of volatility. Since the
GARCH model in equation 2.8 has a representation of the ARMA process, the
predictions can be made similar to the procedure used in ARMA models. Predicting
out-of-sample conditional variance over time using GARCH models can often yield
accurate forecasts of future volatility, especially over short horizons.

For simplicity, consider the GARCH(1,1) model and assume that the forecast
origin is h. For 1-step ahead forecast, we have: σ2

h+1 = ω + α1u2
h + β1σ2

h, where
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u2
h and σ2

h are known at the time index h. Therefore, the 1-step ahead forecast is
σ2
h(1) = ω+α1u2

h + β1σ2
h.

For multi-step ahead forecast, we can use u2
t = σ2

t z
2
t and rewrite the volatility

equation 2.9 as σ2
t+1 = ω+α1σ2

t z
2
t + β1σ2

t . Now adding and subtracting α1σ2
t , and

realized few algebra operations we get σ2
t+1 = ω+ (α1 +β1)σ2

t +α1σ2
t (z2

t −1). When
t=h+1, the last equation becomes: σ2

h+2 = ω + (α1 + β1)σ2
h+1 + α1σ2

h+1(z2
h+1 − 1).

Since E(z2
h+1−1|Fh) = 0, the 2-step ahead volatility forecast at the origin h satisfies

the equation σ2
h(2) = ω+ (α1 + β1)σ2

h(1). In general, we have

σ2
h(k) = ω+

k−1∑
i=1

(α1 + β1)i−1 + (α1 + β1)k−1σ2
h(1) ; k ≥ 2 (2.28)

Notice that, as k →∞ the volatility forecast in equation 2.28 approaches the
unconditional variance ω/(1−α1− β1), if the GARCH process is stationary, that is
α1 + β1 < 1.

Model evaluation and news impact curves

According to Zivot [122], the fit evaluation of a GARCH model can be done using
graphical representation or through more formal statistics tests. If the GARCH is
correctly specified, the estimated series of standardized residuals zt = ut/σt and their
squared z2

t should not display serial correlation, conditional heteroskedasticity or any
type of nonlinear dependence. The modified Ljung-Box statistics 2.4 can be used
to test the null hypothesis of no autocorrelation up to specific lag and Engle’s LM
statistics described in subsection 2.4.1, can be used to test the null of no remaining
ARCH effects. If it is assumed that the errors are Gaussian, then a plot of zt against
time should have approximately 95% of its values between ±2; a normal qq-plot
should look approximately linear; and JB statistics, equation 2.5, should not be too
much larger than six.

According to Yu [120], among the measures used to evaluate the accuracy of
prediction stands out the root mean square error (RMSE), the mean absolute error
(MAE), the U-Thail statistic and mean absolute percentage error (MAPE).

MAE = 1
T

T∑
i=1
|σ2
t − σ̂2

t | ; RMSE =

√√√√ 1
T

T∑
i=1

(
σ2
t − σ̂2

t

)2
(2.29)

Measurements of MAE and RMSE are the most popular measures used to check
whether a given model makes good predictions. In terms of interpretation, small
values or near to zero, indicate the model is well specified and therefore can present
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the best estimates within the sample, consequently better predictions.

MAPE = 1
T

T∑
i=1

∣∣∣∣σ2
t − σ̂2

t

σ2
t

∣∣∣∣ ; U−Thail =
∑T
i=1

(
σ2
t − σ̂2

t

)2

∑T
i=1

(
σ2
t−1−σ2

t

)2 (2.30)

The value of U-Thail is an indication of systematic error since it measures the
extent to which the average of the forecast variance and actual series deviates from
each other. The U-Thail statistics take values between 0 and 1. Values close to zero,
indicate that the model has good performance in forecasting, but values close to one,
is not necessarily an indication of bad forecasting performance.

If more than one GARCH models are all capable to modelling leverage effects,
such as EGARCH, TGARCH and APGARCH, the choice of appropriate model
can be made by using a model selection criterion such as the Bayesian information
criterion (BIC), Akaike Information Criterion (AIC). Alternatively, Engle and
Ng [44], proposed to use the news impact curve (NIC) introduced by Pagan and
Schwert [95], to compare different models.

Following Engle and Ng [44], the news impact curve is a graph of the conditional
variance at time t as a function of the error term at time t-1, assuming that all
previews information are constant. If the news impact curve is symmetrical about
zero, then the shocks of the same absolute value have the same impact on future
conditional variance, otherwise, the shocks of the same magnitude have different
effects on future conditional variance.

In next section 2.5, we present an application of univariate GARCH model,
especially the asymmetric GARCH models, which is a replication of Faias et al. [48]
paper, but here we explore a wider range of asymmetric GARCH models and with
accrued validation in order to get the best possible model specification.

2.5 Application of univariate GARCH models
Exchange rate uncertainty is key in a globalized economy, both for capital move-
ments and trade balance. Furthermore, as documented, for example in Van der
Ploeg [100], volatility can be harmful to macroeconomic performance. A specific
notable example is Obeng and Sakyi [92], where exchange rate volatility affects
interest rate spreads, key for financing decisions. For another hand, Mozambique
currency has gone through distinct periods in terms of the exchange rate, where
Mozambique economy has been experiencing an increasing exploration of natural
resources, bringing the Dutch disease issue to discussion, which puts accrued care
with respect to international operations, either in financing or in trading goods and
services.
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In this context, for the application of univariate GARCH models, we use Mulenga
et al. [87] results which are an extension of Faias et al. [48] paper. That is, we use
asymmetric GARCH models for daily Mozambique New Metical (MZN) against
South Africa Rand (ZAR), a major trading partner, MZN/ZAR exchange rate
over January 2010 to December 2014, where four sub-periods have been identified,
corresponding to differences in exchange rate behavior. Then, we employ various
popular asymmetric GARCH models, which may deliver distinct results, among
themselves and according to the sample considered, either the full sample or its
subsets. The aim in the application is to identify the possible sign and size effects of
news across the distinct exchange rate trends, as well as inspect if and how results
that hold for a full heterogeneous sample can be misleading comparing with the
results from each particular sub-sample.

The remaining of the section 2.5, is organized as follows: in subsection 2.5.1,
we discuss the data and the conditional mean estimation, with particular attention
to the statistical properties exhibited; in subsection 2.5.2, we present the asymmet-
ric models, their validation and results; finally, relevant findings are reported in
subsection 2.5.3.

2.5.1 Data description

Here, we aim at establishing the statistical properties of the data and those for the
residuals from the estimation of the conditional mean process. In Figure 2.1, we
display the daily MZN/ZAR exchange rate, yt, over 2010-2014, a period particularly
rich in distinct sub-periods with specific exchange rate behavior.3 From this plot, we
can observe four marked sub-periods: 2010-depreciation, 2011-appreciation, 2012-
stability and 2013-2014-stability with some appreciation.

We proceed by checking the above patterns, computing beforehand the percentage
change in exchange rate, rt (standing for returns), as first differences of the log series,
rt = [ln(yt)−ln(yt−1)]×100, which is the object of analysis. Then, we run descriptive
statistics and check for stationarity, applying Augmented Dickey-Fuller testing in
each sample period. As shown in Table 2.1, the series are, in every sample considered,
stationary and from the mean variation in each sub-period, we confirm the above
mentioned exchange rate distinct behavior.

Next, we look into volatility and eventual signs of asymmetry. From Table 2.1 one
reads that there is excess kurtosis, which signals eventual ARCH effects (Brooks [27]),
in each sample period, particularly strong in the depreciation sub-period and less
pronounced in the stability sub-period. Following Black [12], we compute, as in

3Data collected at http://www.oanda.com/currency/historical-rates.
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Figure 2.1: MZN/ZAR Exchange rate, 2010-2014

Zivot [122], the correlation between r2
t and rt−1, to look for eventual asymmetry in

the shocks to the variance. The results show that in periods of appreciation, with
or without some stability, there is no asymmetry. Finally, the autocorrelation of
absolute returns, |rt|, as in Ding et al. [34], suggests the existence of long memory.

Table 2.1: Descriptive statistics for the data and residuals from mean regression

Statistics 2010-2014 2010 2011 2012 2013-2014
Data
Mean 0.0236 -0.0544 0.1276 -0.0166 0.0320
ADF z(t) −21.428

[0.0000]
−15.259

[0.0000]
−12.584

[0.0000]
−11.358

[0.0000]
−18.137

[0.0000]
Kurtosis 16.6216 19.8040 6.5273 5.1835 6.5867
corr(r2

t , rt−1) -0.1448 -0.2794 0.0019 0.1217 -0.0053
corr(rt, rt−1) -0.1775 -0.2621 -0.0763 -0.1572 -0.1718
corr(|rt|, |rt−1|) 0.2491 0.3262 0.1240 0.1464 0.2070
Residuals
Ljung-Box Q 1.3934

[0.8433]
1.6632
[0.7974]

4.8063
[0.5926]

4.3624
[0.3624]

2.6667
[0.6151]

ARCH-LM 66.957
[0.0000]

42.216
[0.0000]

16.682
[0.0022]

12.258
[0.0155]

42.801
[0.0000]

Observations 1564 312 312 312 625
Note: p-value in brackets.

Altogether, the evidence points out to different statistical properties of exchange
rate series over marked periods, implying that running a full sample may be mis-
leading. Therefore, we explore the specificity of each sub-period and adjust various
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volatility models that allow for asymmetry.
Following, before running ARCH models, we first specify the mean equations,

presented in general form as ARMA(p,q) processes, identified in a standard way –
through autocorrelation functions along with information criteria – employing Ljung-
Box test as diagnostic for autocorrelation. Secondly, we perform a diagnostic test
for ARCH effects, namely Engle LM statistic.

Specifically, we estimate the equation below,

rt = µ+
5∑
i=1

βidi +
p∑
i=1

φirt−i +
q∑
j=1

θjut−j +ut (2.31)

where µ is a constant, di is a dummy variable that takes the value 1 if the day of the
week is i and zero, otherwise. i= 1, ...,5 where i= 1 for Monday, i= 2 for Tuesday,
i= 3 for Wednesday, i= 4 for Thursday and i= 5 for Friday and ut is the residual,
also named shock or news. The results for Ljung and Box and ARCH-LM tests,
displayed in Table 2.1, ensure a correct specification and, importantly, evidence for
the existence of significant ARCH effects in all sample periods.

Summing up, there is statistical evidence for ARCH effects and signs of asymmetry
in most of the samples considered. Thereby, can continue the analysis by introducing
the process for the conditional variance employing mainstream ARCH models that
allow for asymmetry and eventual effects.

2.5.2 Model results

Given the statistical findings from the previous sub-section 2.5.1, we proceed to
report the results for most popular asymmetric ARCH models that are able to
capture persistence, along with sign and size effects of shocks to the variance. In
particular, we estimate four variants of asymmetric GARCH family discussed in
section 2.3, namely: The Exponential GARCH (EGARCH) of Nelson [90], the
Threshold GARCH (TGARCH) of Zakoian [121], the GJR-GARCH of Glosten et
al. [52] and the Asymmetric Power ARCH (APARCH) of Ding et al. [34].

The specifications estimated and their estimates, with respective inference, are
herein analysed.4 For the conditional mean, the ARMA(1,1) model prevailed in all
samples considered, except for the appreciation period, the year 2011, where an
ARMA(1,2) is estimated. In these processes, the Monday effect is the strongest.

As to the conditional variance, the GARCH(1,1) specification considered for all
asymmetric models: EGARCH(1,1), TGARCH(1,1), GJR-GARCH(1,1) and AP-
GARCH(1,1), is used as a standard common window to look into each sample and

4Computations have been conducted using STATA.
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compare across samples. The estimates from these models, presented in Table 2.2,
discussed here, are valid given the diagnostic statistics outcome, displayed in Ta-
ble 2.3.

Table 2.2: Estimates of the asymmetric ARMA-GARCH models

Period Model ω α γ β

Full sample EGARCH 0.0295
[0.0000]

−0.0059
[0.4820]

0.2611
[0.0000]

0.9623
[0.0000]

2010 – 2014 TGARCH 0.0381
[0.0000]

0.1339
[0.0000]

−0.0001
[0.990]

0.8724
[0.0000]

GJR-GARCH 0.0691
[0.0000]

0.1143
[0.0000]

0.0055
[0.6800]

0.8402
[0.0000]

APGARCH
[Power=1.89](∗)

0.0641
[0.0000]

0.1186
[0.0000]

0.0091
[0.7560]

0.8468
[0.0000]

Depreciation EGARCH −0.0406
[0.0180]

0.0840
[0.0007]

−0.1590
[0.0000]

0.9453
[0.0000]

2010 TGARCH 0.0922
[0.0070]

0.2316
[0.0000]

−0.0266
[0.3980]

0.7887
[0.0000]

GJR-GARCH 0.1917
[0.0000]

0.1995
[0.0029]

−0.0332
[0.4919]

0.7507
[0.0000]

APGARCH
[Power=1.95](∗)

0.1805
[0.0000]

0.1838
[0.0002]

−0.0176
[0.7785]

0.7563
[0.0000]

Appreciation EGARCH 0.0128
[0.1050]

0.0010
[0.9700]

0.1421
[0.0000]

0.9965
[0.0000]

2011 TGARCH 0.0105
[0.4330]

0.0760
[0.0030]

0.0130
[0.6340]

0.9335
[0.0000]

GJR-GARCH 0.0178
[0.1050]

0.0829
[0.0000]

−0.0869
[0.0020]

0.9587
[0.0000]

APGARCH
[Power=3.33](∗)

0.0785
[0.1310]

0.0327
[0.4920]

−0.6523
[0.2660]

0.8781
[0.0000]

Stability EGARCH 0.0199
[0.5340]

0.1734
[0.0000]

0.0320
[0.6860]

0.6112
[0.0110]

2012 TGARCH 0.3930
[0.1030]

−0.0878
[0.0970]

0.1736
[0.0090]

0.6192
[0.0070]

GJR-GARCH 0.3358
[0.0354]

0.0921
[0.0845]

−0.2196
[0.0035]

0.7007
[0.0000]

APGARCH
[Power=3.35](∗)

0.7654
[0.0021]

0.0132
[0.0864]

−0.9418
[0.0000]

0.1962
[0.1906]

Stab-Apprec EGARCH 0.0075
[0.0930]

0.0094
[0.6030]

0.1688
[0.0000]

0.9876
[0.0000]

2013 – 2014 TGARCH 0.0116
[0.0460]

0.0758
[0.0000]

0.0194
[0.2840]

0.9254
[0.0000]

GJR-GARCH 0.0138
[0.0150]

0.0587
[0.0000]

0.0232
[0.3200]

0.9176
[0.0000]

APGARCH
[Power=2.16](∗)

0.0140
[0.0130]

0.0661
[0.0130]

0.0656
[0.4380]

0.9157
[0.0000]

Note: (∗) power is significant at 5%; p-value in brackets.

Regarding the full sample, only the EGARCH model shows significant asymmetry
of shocks, but no size effect and the good news have the larger effect on volatility,
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contrary to what can be expected from the earlier empirical literature. The remaining
TGARCH, GJR-GARCH and APGARCH models show similar results, although
there is no asymmetry, there is persistence in volatility and size effects in all models.

Concerning the sub-samples, results differ among them and, importantly, they
are often at odds with the full sample findings. This means that overlooking heteroge-
neous periods, corresponding to alternative currency trend behavior, give misleading
results for volatility estimation and assessment of news impact.

Specifically, for the depreciation ("bearish") period, the year 2010, from EGARCH
model we get the usual result that negative shocks play the larger role and that size
matters, larger shocks affect more the conditional variance. For the APGARCH
family, these same results hold although actually without statistical significance.
Notice that concordance among the set of models and of the findings against previous
literature is verified in this sub-period, and this only.

As to the appreciation ("bullish") period, 2011, the EGARCH shows, interestingly,
that positive shocks have the stronger impact, but the size is not significant, thereby
large and positive shocks affect exchange rate volatility in the same way. Similar
results are also exhibited in the stability-with-appreciation period, 2013-2014. How-
ever, it is worth noting that in the appreciation time, GJR-GARCH model points
out, contrary to EGARCH, that negative shocks have a larger role. On the other
hand, TGARCH and APGARCH (about power 3) indicate that all shocks are equal.
Thus, at odds with 2010, the set of models show clear disagreement on which news
matter more.

The stability period, 2012, is lively in a variety of results with a noteworthy
pattern. To be precise, EGARCH model says that the size of shocks matter, the
larger the shock the greater the impact on volatility, no asymmetry. The APGARCH
family shows, in particular, the relevance of the sign of news affecting the conditional
variance but as power grows the relative role of good-bad news evolves. More precisely,
the TGARCH (δ = 1) says that positive shocks are more important, conversely, GJR-
GARCH (δ = 2) points out the negative ones and the APGARCH itself (δ estimated,
near 3) puts it with greater emphasis.

Looking at Table 2.4, the sign tests confirm in general, the results from esti-
mates. That is, taking sign and size bias, individually or jointly, we obtain the
described prominence of negative shocks in "bad"/ depreciation times and positive
shocks "good"/appreciation and stability-with-appreciation times, although mild in
the appreciation trend.

The news impact curves reinforce the above findings. For the purposes of illus-
tration, Figures 2.2 and 2.3, show the pattern found.

Overall, EGARCH model delivers results on asymmetry and size which are the
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Table 2.3: Diagnostic on estimated GARCH models

Period model Ljung-Box Q(15) ARCH-LM(15)
Full sample EGARCH 17.103[0.313] 21.993[0.108]
2010-2014 TGARCH 22.651[0.092] 23.260[0.078]

GJR-GARCH 11.963[0.682] 18.047[0.260]
APGARCH 12.208[0.663] 18.682[0.228]

Depreciation EGARCH 7.503[0.942] 17.219[0.306]
2010 TGARCH 17.364[0.297] 14.761[0.468]

GJR-GARCH 9.185[0.867] 11.205[0.738]
APGARCH 9.098[0.872] 11.246[0.735]

Appreciation EGARCH 9.476[0.851] 15.627[0.407]
2011 TGARCH 7.897[0.928] 16.011[0.381]

GJR-GARCH 10.514[0.786] 16.501[0.350]
APGARCH 18.906[0.218] 16.898[0.325]

Stability EGARCH 7.846[0.930] 7.582[0.940]
2012 TGARCH 8.030[0.923] 8.463[0.904]

GJR-GARCH 11.003[0.752] 9.622[0.843]
APGARCH 7.841[0.930] 7.839[0.930]

Stab-Apprec EGARCH 20.954[0.138] 18.574[0.234]
2013-2014 TGARCH 21.204[0.130] 19.934[0.174]

GJR-GARCH 21.065[0.135] 19.113[0.208]
APGARCH 20.990[0.137] 18.659[0.230]

Note: p-value in brackets.

Figure 2.2: News impact curves for 2010-2014

reverse of those exhibited by the remaining APGARCH family models. Disregarding
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Table 2.4: Test of asymmetries of volatility processes

Period model SB NSB PSB Joint test

Full sample EGARCH -1.2695[***] -2.3630[***] 0.6094[***] 118.788[***]
2010-2014 TGARCH -1.1789[***] -2.2354[***] 0.6477[***] 112.067[***]

GJR-GARCH -1.2634[***] -2.2878[***] 0.5694[***] 110.973[***]
APGARCH -1.2627[***] -2.2854[***] 0.5713[***] 110.817[***]

Depreciation EGARCH -3.4138[** ] -4.4857[***] 0.5485 53.4440[***]
2010 TGARCH -3.4085[* ] -3.8222[***] 0.9996 39.1550[***]

GJR-GARCH -2.6871[* ] -3.5928[***] 0.9240 36.7350[***]
APGARCH -2.7230[* ] -3.6220[***] 0.9067 37.1380[***]

Appreciation EGARCH -0.4895 -0.3866 0.1878 1.4928
2011 TGARCH 0.2749 -0.2740 0.4091 2.0526

GJR-GARCH -0.0288 -0.3529 0.2902 1.5550
APGARCH -0.0703 -0.4269 0.2322 1.3373

Stability EGARCH 1.0662[***] 0.4356 0.8250[***] 15.2390[***]
2012 TGARCH 1.0286[***] 0.4450 0.7779[***] 13.9639[***]

GJR-GARCH 1.2110[***] 0.3633 0.9705[***] 18.2590[***]
APGARCH 1.1856[***] 0.3849 0.9870[***] 19.3130[***]

Stabil-Apprec EGARCH 0.4155 -0.4614[***] 0.7521[***] 24.2112[***]
2013–2014 TGARCH 0.4702[* ] -0.3900[** ] 0.7992[***] 24.0240[***]

GJR-GARCH 0.3497 -0.4429[** ] 0.7428[***] 22.8380[***]
APGARCH 0.3588 -0.4561[***] 0.7395[***] 23.1504[***]

Note: [∗],[∗∗] and [∗∗∗] significance at 10%, 5% and 1%, respectively; p-value in brackets,
SB (sign bias), NSN (negative size bias), PSB (positive size bias)

Figure 2.3: News impact curves for 2010

heterogeneity in the sample, as to the currency trend, leads to incorrect conclusions
on volatility and type of news impact. Two key novel outcomes are observed: (i)
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positive shocks have a larger impact on currency appreciation and stability-with-
appreciation times; (ii) the major role for positive versus negative news is reversed,
more clearly in the stability time, starting with positive ones and as the power of the
APGARCH increases, i.e., going from TGARCH (δ = 1), to GJR-GARCH (δ = 2)
and the APGARCH as such (power is estimated), the negative ones emerging as
those with larger impact.

Lastly, two broad implications are drawn: (i) role of type and size of shocks are
currency trend specific; (ii) model choice is relevant, putting emphasis on selection
criteria as well as a robustness analysis is due. Recall that all players in international
markets need to assess exchange rate risk, i.e., persistent volatility, and take into
account which news has a major effect. Importantly, the central banks also care
for this issue in their daily exchange rate management, especially when pressure is
stronger, as may be the case in natural resource producing countries.

2.5.3 Conclusions

Exchange rates and especially their volatility are crucial in open economies, par-
ticularly in natural resource producing countries, because of their implications for
economic performance, as a whole, and for international capital movement and goods
and services transactions.

We focus not only on measuring exchange rate risk, that is the volatility that
persists, but inspect if news size and sign affect variance in a different way, when
considering a full heterogeneous sample according to currency trend behavior and
we check whether results are sensitive to model choice. For this purpose we divide
the full sample into four periods with distinct currency behavior – 2010-depreciation,
2011-appreciation, 2012-stability and 2013-2014 stability with appreciation – and
apply mainstream asymmetric GARCH models, namely Exponential GARCH(1,1),
Threshold GARCH(1,1), GJR-GARCH(1,1) and Asymmetric Power GARCH(1,1).
The validation of models is done with sign-size bias tests, along with the plots of
news impact curves.

Our results bring new contributions and reinforce the existing literature. We
find that model choice is key for the conclusions, highlighting the importance of
selection criteria and diagnostic testing. Novel contributions come from the pervasive
sensitivity of results to currency trends, as well as modelling options in nontrivial
ways. Indeed, results from the full heterogeneous sample masks to some extent,
the existence of size and sign effects of news. In detail, the evidence suggests that
in depreciation times the significance of asymmetry and importance of size effects
are stronger, whereas in stability periods exchange rate risk seems to be lower (less
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significant ARCH effects, given testing and models estimates).
Likewise, of special interest, we tend to find that positive shocks, i.e., positive

news, have a higher effect on volatility, than bad ones, when the currency trend
is appreciation and/or stability, while the reverse happens when the odds are of
depreciation. These set of results are validated by the sign tests and illustrated
in the computed news impact curves. Finally, modelling choice drives results in
different ways, with a noteworthy outcome applying to the stability period, 2012,
and depreciation one, 2010, where increasing the power of the APGARCH choice –
recall that power 1 is TGARCH, 2 is GJR-GARCH – changes the significant sign
effect from positive to negative. In sum, when news comes along the trend in
exchange rate behavior, risk increases by more than otherwise (likely before the fear
of over-reaction, e.g. overvaluation in the face of a Dutch disease), and nonlinearity
and memory matter.

All in all, the current study offers key results, useful for policy decision making
and with possibly new theoretical underpinnings. Namely, renewed attention should
be given to modelling, strengthening the emphasis on selection, diagnostic and
need for robustness analysis, along with due care as to the currency trend, which
appears relevant for conclusions drawn. Finally, in the policy design, memory and
nonlinearity matter and the trend behavior of exchange rate is key for assessing the
effects of news on exchange rate risk, is that not always good news are good.

The findings presented here are inconclusive because for more consistent and
robust claims it was necessary to compare or do other studies related to Mozambique
or countries with similar economies.
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Vector Autoregressive Models

3.1 Introduction

Forecasting and measurement of policy effects are key issues in the analysis of macroe-
conomic and financial data. The pursuit of these aims requires the specification and
estimation of models that represent relationships among variables of interest.

In making choices between alternative courses of action, decision makers often
need predictions of economic variables. If time series observations are available for a
variable of interest and the data from the past contain information about the future
development of a variable, it is plausible to use as forecast based on current and
past data. According to Lütkepohl [77], formally, this approach to forecasting is the
major goal of univariate time series analysis, where models of Box and Jenkins [22]
are widely used. However, with economic variables, often the value of one variable is
not only related to its past in time but, it depends on past values of other variables.

Taking into account the relationship between variables, in the literature there
is the concept of simultaneous equations, where the system of equations can be
estimate by indirect least squares, two-stage least squares or instrumental variables,
etc. The common on the most approaches is to separate the system variables in
two groups: the exogenous variables that are not affected by other variables in the
system and endogenous variable that are explained by a model.

Taking into account the relationship between variables Sims [109], criticized the
simultaneous equation estimation procedure where restrictions needed for identifi-
cation and classification of exogenous and endogenous variables in the system and
suggest the Vector Autoregressive (VAR) model for analysis of macroeconomic time
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series. Following Stock and Watson [114], these new procedure is a simple technique
that allows the systematic capture of dynamics between the various series that are
analysed. Following Enders [38], the essential in the VAR model is to treat all
variables simultaneously without taking into account the concept of independence
or dependence. Thus, in the VAR model all variables are treated as endogenous.
In the literature the VAR class models and their applications in macroeconomic
and finance, can be see in Enders [38], Hamilton [58], Lütkepohl [77], Pfaff [98],
Tsay [116], among others.

Following Engle and Granger [42] and Granger [55], in situations where several
variables are driven by common stochastic trend, they have a strong link that may
also be of interest from an economic point of view, and that variables are called
cointegrating. If cointegrating relations are present in a system of variables, the
vector autoregressive form is not the most convenient model setup. In that case
it is useful to consider specific parametrizations that support the analysis of the
cointegration structure, which are known as vector error correction (VEC) model.
According to Lütkepohl [77], the main uses of vector autoregressive models are
forecasting and structural analysis. Also follows Stock and Watson [114], the four
tasks of multivariate analysis of macroeconomic data are: describe and summarize
macroeconomic data, make macroeconomic forecast, quantify what we do or do not
know about the true structure of the macro-economy, and advise macroeconomic
policy markets.

Recent applications of the VAR models are in authors such as Maysami and
Koh [82], where applied VEC model to study the Singapore stock market, and
conclude that, the Singapore stock market is interest and exchange rate sensitive, in
addition their found that the Singapore stock market is significantly and positively
cointegrated with stock markets of Japan and the United States, Chaudhry and
Bukhari [29], use the structural VAR model to analysis the impact of macroeconomic
shock on Pakistan’s textile exports, and their found that, positive shocks in the textile
exports of competitor countries lead to temporary decreases followed by eventual
increases. The common in most application of vector autoregressive model, is the
presence of cointegrating equations which suggests the long-run relationship among
the variables in the system.

For this chapter 3, after the introduction we present the review of VAR models
in different specifications from the basic VAR, VEC, SVAR to SVEC models. Also,
we discuss some specific tests used in the VAR class models as well as the estimation
procedures are presented.
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3.2 Vector autoregressive process
Let yt = (y1t, ...,ykt)′ denote an K×1 vector of K stationary time series variables col-
lected in a given period of time t. According to Sims [109], the Vector autoregressive
of order p, VAR(p) model, in reduced form can be described as:

yt = Φ0 +
p∑
i=1

Φiyt−i + ut and ut ∼N(0,Σu) (3.1)

where Φ0 is a K × 1 vector of constants, Φi are K ×K matrices of coefficients,
and ut is a K × 1 vector white noise process, with the properties: E(ut) = 0 for
all t, E(utu′t) = Σu and E(utu′s) = 0 for t , s. Where the covariance matrix Σu

is assumed to be positive definite, and ut are serially uncorrelated but may be
contemporaneously correlated which indicates instantaneous relations between the
endogenous variables.

For p = 1, the VAR(1) equation is yt = Φ0 + Φ1yt−1 + ut. For K=3, the three-
variate VAR(1) model can be written as:

y1t

y2t

y3t

=


φ01

φ02

φ03

+


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



y1t−1

y2t−1

y3t−1

+


u1t

u2t

u3t


or equivalently, can be written the system in standard form:

y1t = φ01 +φ11y1t−1 +φ12y2t−1 +φ13y3t−1 +u1t

y2t = φ02 +φ21y1t−1 +φ22y2t−1 +φ23y3t−1 +u2t

y3t = φ03 +φ31y1t−1 +φ32y2t−1 +φ33y3t−1 +u3t (3.2)

In addition to the assumption of stationary y1t, y2t and y3t, the residuals u1t,
u2t and u3t are uncorrelated white noise error terms, for example cov(u1t,u2t) = σ12

and 0 otherwise. Notice that each variable is expressed as a linear combination of
lagged values of itself and lagged of all other variables in the system.

The coefficients in the system 3.2 can be interpreted as follows: the φ12 is the
link of the variables y2t−1 in the variable y1t with presence of y1t−1 and y3t−1. Other
parameters are interpreted in the same way. If φ12 = 0, it means y1t does not depend
on y2t−1, and so on.

3.2.1 Reduced and structural forms

For multivariate time series, there are different ways to represent VAR models, here
we present the reduced and structural forms. Following Enders [38], in the standard
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form 3.2, the concurrent relationship between the series is shown by the off-diagonal
elements σij of the covariance matrix Σ of ut. If σij = 0, then there is no concurrent
linear relationship between the series. The VAR (p) model in standard form is also
called VAR in reduced form 3.1, because it does not show explicitly the concurrent
relationship between the series.

According to Stock and Watson [114], the vector autoregressive is in reduced
form if each variables is expressed as a linear function of its own past and past values
of all other variables being considered and a serially uncorrelated error term.

Because in the VAR models all the variables are endogenous, if we multiply the
equation 3.1 by A and written in matrix form we obtain the following equation.

Ayt = Φ∗0 +
p∑
i=1

Φ∗iyt−i + εt (3.3)

This is the structural form, where the matrix A reflects the instantaneous relations
between the variables in the model, Φ∗0 = AΦ0 is an vector of constants, Φ∗i = AΦi

are matrices of parameters and εt = Aut is unobservable white noise vector process
with covariance matrices Σε = AΣuA′, that is εt ∼N(0,Σε).

The matrix A usually has ones on its main diagonal, so that the set of equations
in 3.2 can be written such that each of the variables appears on the left-hand side
of the equations and may depend on contemporaneous values of some or all of the
other variables.

According to Kilian [67] and Luetkepohl [76], the parameters of the structural
form are not identified without further restrictions. Imposing restrictions on A and
Σε to identify the structural form is a main focus of the structural VAR analysis.
Often zero restrictions are placed on some variables to not allowed an instantaneous
impact on some other variables. For example, A may be lower-triangular if there
is a recursive relation between the variables. Therefore, the reduced form model is
commonly used for two reasons: The first reason is easy in estimation, the second
and main reason is that the concurrent correlation cannot be used in forecasting.

3.2.2 Inconvertibility of moving average representation

According to Baltagi [5] and Lütkepohl [77], for VAR(p) process 3.1, under the
stability condition can be take the representation.

yt = µ+
∞∑
i=0

Ψiut−i (3.4)

This form of representation is called the moving average (MA) representation,
where yt is expressed in terms of past and present innovations vectors ut and the
mean term µ.
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Using the lag operator L, we can consider the structural moving average (SMA)
representation for yt:

yt = Ψ(L)ut (3.5)

where yt is an K× 1 vector of economic variables, ut is an K× 1 vector of residuals
and Ψ(L) = Ψ0 + Ψ1L + ... , where Ψi is K ×K and we will write Cij = |cij ,K|.
The equation 3.5 is called SMA model, since the elements of ut are given a structural
economic interpretation. Note that the Structural VAR (SVAR) representation is
obtained by inverting Ψ(L) from equation 3.5, that is:

Ψ(L)−1yt = Φ(L)yt = ut (3.6)

where Φ(L) = Φ0−
∑∞
i=1 Φi(Li), is one sided matrix lag polynomial. In equation 3.6,

the exogenous shocks ut are written as a distributed lag of current and lagged values
of yt. However, it is not always possible to invert Ψ(L) and move from the SMA
representation 3.5 to the SVAR representation 3.6.

Following Granger and Anderson [56], one useful way to discuss the inconvertibil-
ity problem is in terms of estimates of ut constructed from SVAR using truncated
version of Φ(L), because {yt}Tt=−∞ realizations is never available. Consider the esti-
mator ût =∑t−1

s=0 Φsyt−s constructed from the truncated realization. If ût converges
to ut in mean square as t→∞, then the SMA process is said to be invertible and
the structural errors can be recovered as one-sided MA of the observed data, at least
in large samples.

3.3 Estimation of VAR parameters

The Vector Autoregressive model is a general framework used to describe the dynamic
interrelationship between stationary variables. So, in addition to the univariate
stationary test discussed in subsection 2.1.1, the first step in VAR analysis should
be to determine whether the data are multivariate stationary.

Let yt = (y1t,y2t, ...,ykt)′ denote K×1 vector of K time series obtained in a given
period of time t, where, each variable is a stationary and stable time series.

A multivariate time series yt, is covariance stationary and ergodic if all time series
are stationary and ergodic. That is E(yt) = µ = (µ1, ...,µk)′, where µi = E(yi) for
i= 1, ...,k and the variance covariance matrix of yt is var(yt) = E[(yt−µ)(yt−µ)′] =
Γ0. The matrix Γ0 has elements γ0

jt = cov(yit,yjt) and the correlation matrix R0

of yt is the K ×K matrix: corr(yt) = D−1Γ0D−1 with D = diag(σ11, ...,σkk) the
K ×K diagonal matrix with the standard deviation of yii,t along the diagonal.
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The parameters Γ0 and R0 are estimated from data using the sample moments.
Γ0 = 1

T
∑T

t=1(yt−µ)(yt−µ)′ ; R0 = D−1Γ0D−1 = corr(yt), µ= (µ1, ...,µk)′ where
µi = 1

T

∑T
i=1 yi.

3.3.1 Lag length selection for VAR estimation

Before estimation the VAR parameters, is necessary to choose an appropriate lag
length order p of VAR. In the literature, there are two popular methods: the
Likelihood ratio statistic and using the information criteria.

Likelihood ratio statistic. On Likelihood Ratio (LR) test, the model with a
smaller number of lags is treated as a restricted version of a larger dimensional
model. Since the two models are nested, under the null hypothesis the restricted
model is correct, differences in the likelihood should be small. Let R(α) = 0 be a set
of restrictions and L(α,Σu) the likelihood function, then: LR = T (ln|Σreu |− ln|Σunu |)
converges to χ2(v). Where v is the degrees of freedom equal to the difference of
dimensions in the two models.

According to Lütkepohl [77], there are four important features of LR test that
need to be highlight. First, a test is valid when the set of time series in yt are
stationary and ergodic, and if the residuals are white noise. Second, it can be
computed without explicit distribution assumption on the y′ts. What is required is
that the residual is a sequence of independent and identically distributed (IID) white
noise with bounded fourth moment and that T is sufficiently large, in which case αun,
Σunu , αre, Σreu are pseudo - maximum likelihood estimators. Third, a test is biased
in small samples. Hence it is common to use LRc = (T − pK)(ln|Σreu | − ln|Σunu |)
where pK is the number of estimate parameters in each equation of the unrestricted
system. Finally, the LR test is only asymptotically valid.

In practice, an estimate of p can be obtained sequentially, as the next algorithm
shows:

1. Choose an upper bound p;
2. Test VAR(p−1) against VAR(p) using a LR test. If the null hypothesis is not

rejected;
3. Test VAR(p−2) against VAR(p−1) using an LR test, and so on, until rejection.

Clearly, p depends on the frequency of data. The typical choices are 3, 8 and 18 for
annual, quarterly and monthly data respectively.

Using information criteria. According to Zivot and Wang [123], the general
approach in using the information criteria is to fit VAR(p) models with orders
p= 0, ...,pmax and choose the value of p which minimizes some model selection criteria.
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The model selection criteria for VAR(p) have the form IC(p) = ln|Σ̃(p)|+cT ∗ϕ(p,K).
where Σ̃(p) = T−1ΣTt=1ûtû′t is the residual covariance matrix of order p, cT is a
sequence indexed by the sample size T, and ϕ(K,p) is a function of the p which
penalizes large VAR(p) models.

The three most common information criteria used are: Akaike Information Cri-
teria (AIC), Schwartz-Bayesian Information Criteria (SBIC), and Hannan-Quinn
Information Criteria (HQIC).

AIC = ln|Σ̃(p)|+ 2
T

(pK2) with cT = 2/T

HQIC = ln|Σ̃(p)|+ 2ln(ln(T))
T

(pK2) with cT = 2ln(ln(T)/T

SBIC = ln|Σ̃(p)|+ 2ln(T)
T

(pK2) with cT = 2ln(T )/T (3.7)

where pK2 is the freely estimated parameters, K is the number of variables in VAR
model, Σ̃(p) the residual variance-covariance matrix.

According to Lütkepohl [77], Kirchgässner and Wolters [69], another criteria order
selection is called Final Prediction Errors (FPE), which is based on the minimization
of the forecast mean squared error.

FPE =
(
T + pK + 1
T − pK − 1

)K
× |Σ̃(p)| (3.8)

The criteria differ in penalization according to inclusion of additional parameters
in the model. The penalization is such that HQIC as well as SBIC consistently
determine the order of the true maximal lag in finite sample, while the FPE and the
AIC tend to overestimate it. This is summarized in the following relations:

1) p(SBIC)≤ p(HQIC);

2) p(SBIC)≤ p(AIC) for T ≥ 8 and

3) p(HQIC)≤ p(AIC) for T ≥ 16.

We notify that, the AIC and FPE gives the same lag length order in small sample.

3.3.2 Methods of estimation VAR parameters

As long as the VAR order p is selected, estimation of the parameters of the model
requires that the variables in the set yt = (y1t, ...,ykt)′ are covariance stationary,
with their first two moments finite and time invariant. If the variables are not
covariance stationary, but their first differences are, they may be modelled with
a vector error correction model. In order to find the important inter-relationship
among the variables, the OLS or MLE are two approaches used for estimation the
Vector autoregressive models.
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Ordinary least squares estimation

Lets consider the basic model 3.1, where we assumes that the VAR(p) is variance -
covariance stationary and there are no restrictions on the parameters of the model.
In Seemingly Unrelated Regression (SUR) system, each equation in the VAR(p) may
be written as yi = xΦi+ui for i= 1, ...,p, where yi is a (T×1) vector of observations
on the ith equation, x is a (T×K) matrix with tth row given by x′ = (1,y′t−1, ...,y

′
t−p),

Φi is a (K×1) vector of parameters and ui is a (T ×1) error with covariance matrix
σ2
i IT .
Given the equation yt = xΦ i + ut multiplying by x′t and taking expectation we

get the equality E(ytx′t) = Φ iE(xtx′t) +E(utx′t). Under the assumption of orthog-
onality condition E(x′ut) = 0 and the matrix E(x′txt) = Σ

p
t=1xtx′t non-singular, the

parameters Φi can be estimated efficiently by OLS equation by equation.

Φ̂OLS =
[ T∑
t=1

ytx′t
][ T∑
t=1

xtx′t
]−1

(3.9)

Under standard assumption regarding the behavior of stationary and ergodic VAR
models, the vector of coefficients vec(Φ̂) is consistent and asymptotically normally
distributed with asymptotic covariance matrix âvar(vec(Φ̂)) = ∑̂⊗ (x′x)−1; where∑̂ = 1

T − k
∑T
t=1 ûtû′t, the symbol ⊗ denote Kronecker multiplication and ût =

yt − Φ̂′x is the multivariate least squares residual at time t. In these context, if
there are no restrictions on the VAR, OLS estimation of the parameters, equation
by equation is consistent and efficient.

Maximum likelihood estimation

Writing equation 3.1 in a compact form yt = Φxt+ut, where Φ = (Φ0, ...,Φp) is an
(K×(pK+1)) matrix of parameters of the ith equation in VAR, xt = [1,yt−1, ...,yt−p]′

is an (pK + 1)× 1 vector and ut is (K × 1) vector of residuals.
If the residuals are Normal distributed ut ∼N(0,Σu), the conditional density is

multivariate Normal distributed, yt|yt−1, ...,yt−p ∼N(Φxt,Σu) and the conditional
density of the tth observation is

f(yt|yt−1, ...,yt−p,Φ) = (2π)−( K
2 )|Σ−1

u |1/2exp
[
(−1

2(u′tΣ−1
u ut))

]
(3.10)

The likelihood function is the product of these densities for t= 1, ...,T .
The log – likelihood function is the sum of the log of all these densities

LogL(Φ,Σu) =−TK2 log(2π) + T

2 log|Σ−1
u | −

1
2
∑T

t=1

[
(yt−Φxt)′Σ−1

u (yt−Φxt)
]

(3.11)
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The value of Φ that maximize the log - likelihood is the maximum likelihood
estimator of the vector autoregressive coefficients.

Φ̂MLE =
 T∑
t=1

ytx′t

 T∑
t=1

xtx′t

−1

(3.12)

which is just the estimated equation 3.9 coefficients by an OLS regression of the yt
on xt. Thus, maximum likelihood estimation of the coefficients for the ith equation
of VAR are found by an OLS regression. This means that the ML estimator of the
VAR coefficients is equivalent to apply OLS for each equation of the VAR separately.
The ML estimator for the variance is Σ̂u = 1

T

∑T
t=1 ûtû

′
t. Note that the maximum

likelihood estimator for the variance is consistent, but is biased in small samples, so
it is common to use the variance estimator adjusted by the number of degrees of
freedom, Σ̃u = T

T − pK − 1Σ̂u. These maximum likelihood estimation is necessary
and useful for SVAR analysis.

In the estimation process it’s important to test if all coefficients are statistically
significant for the model. The significance for each coefficient can be done by com-
puting the t-statistic. If the value of t-statistic is greater in absolute value than the
critical value (or p-value < α), we reject the null hypothesis that the coefficient is
not significant.

The significance of all regressor excluding the intercept is tested by F - statistic.
Under the null hypothesis that all slope coefficients are zero against that, at least
one coefficient is different from zero. We reject the null if observed F -statistic is
greater than the critical value, Fα(K,T −K − 1).

3.3.3 Checking the model adequacy

Once a VAR(p) model has been estimated, it is of interest to see whether the residuals
are compared with model assumption. That is, one should check for stability of the
VAR process, the presence of serial correlation, heteroskedasticity and if the error
process is Normally distributed.

Stability condition

Using the lag operator and defined the matrix polynomial in the lag operator Φ(L)
as Φ(L) = Ik−Φ1L−Φ2L = ...= ΦpLp, the process 3.1 can be equivalently written
as Φ(L)yt = ut.

The VAR process is stable if and only if all included variables are stationary, i.e,
all roots of the characteristic equation of the lag polynomial are outside the unit
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circle.

det(Φ(z)) = det(Ik−Φ1z−Φ2z2− ...−Φpzp) , 0 for |z| ≤ 1 (3.13)

So the necessary and sufficient condition for VAR stability is that all characteristic
roots of Φ(z) = 0 lie outside the unit circle.

Multivariate test for autocorrelation

According to Lütkepohl [77], autocorrelation of the residuals indicates that there
is information that has not been accounted for in the model. For testing the lack
of serial correlation in the residuals of a VAR(p) model, a Portmanteau test and
Lagrange Multiplier (LM) test proposed by Breusch [25] and Godfrey [53] are most
commonly applied.

The multivariate Portmanteau test for autocorrelation in a set of residuals is
a generalization of the univariate Ljung - Box Portmanteau test for white noise
discussed in subsection 2.1.2. The test was proposed by Hosking [61], and it’s
applied to the residuals of a multivariate regression, such as VAR model with the
following null hypotheses, H0: no residual autocorrelation up to lag h. As a function
of h-lags, the test statistic is.

MLB(h) = T (T + 2)
h∑
i=1

(T − i)−1tr
(
Ĉ0iĈ−1

00 Ĉ
′
0iĈ−1

00
)

(3.14)

where Ĉ0i = T−1∑T
t=i+1 ûtû′t−i is the sample auto-covariance matrix of order i.

Under the null hypothesis, the multivariate Ljung-Box test MLB(h) is distributed
asymptotically as χ2(K2(h−p)) where K is the number of time series, p the number
of lags in the model estimation and h the number of lags chosen after lag p. Rejection
the null indicates that at least one series have autocorrelation in the residuals that
is, one series is not white noise.

The Breusch-Godfrey LM -statistic is based upon the following auxiliary regres-
sion for residuals: ût = Φ1yt−1 + ...+ Φpyt−p + B1ût−1 + ...+ Bhût−h + εt. The
null hypothesis is H0 : B1 = ... = Bh = 0, against the alternative H1 : ∃Bi , 0 for
i= 1,2, ...,h. The test statistic is defined as:

LMh = T
(
K − tr(Σ̃−1

re − Σ̃un)
)

(3.15)

where Σ̃−1
re and Σ̃un are the residual covariance matrix of the restricted and unre-

stricted models, respectively. The test statistic LMh is distributed as χ2(hK2). In
practice, we can use MLB or LM statistic to check the adequacy of a fitted model.
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Multivariate normality test

Testing for normality of log-returns is a common procedure in much applied work and
many tests have been proposed. In the literature, there are different procedures for
multivariate normality tests, some of them are discussed in Mulenga et al [88]. Here
we present the procedure suggested by Mardia [80], and by Doornik and Hansen [36],
based on multivariate Skewness and Kurtosis tests.

Let K independent variables and yi = (y1,y2, ...,yk)′ for i= 1, ...,T , where y de-
note the T×K matrix of observations. In order to test whether the set of K -variables
are multivariate normal distributed with mean µ= (µ1, ...,µk)′ and finite covariance
Σ> 0, MVN(µ,Σ). Mardia [80], define the sample measures of multivariate Skew-
ness bM,1 and Kurtosis bM,2, as:

bM,1 = 1
T 2

T∑
i=1

T∑
j=1

[(yi−y)′S−1(yj−y)]3; bM,2 = 1
T

T∑
i=1

[(yi−y)′S−1(yi−y)]2 (3.16)

where y and S be the sample mean vector and the covariance matrix as follows.
y = 1

T

∑T
i=1 yi and S = 1

T

∑T
i=1(yj −y)′(yi−y).

The multivariate normality when the population is N(µ,σ), using Mardia mea-
sures of multivariate Skewness and Kurtosis is given by:

MJBM = T
{
bM,1

6 + (bM,2−K(K + 2))2

8K(K + 2)

}
(3.17)

The Mardia MJB statistic is asymptotically distributed as χ2
α(K(K+1)(k+2)/6)

distribution, where K is the number of variables.
An alternative of Jarque-Bera test can be found in Doornik and Hansen [36],

Lütkepohl [77] and Srivastava [111]. The Jarque-Bera normality tests for univariate
and multivariate series are implemented to the residual of a VAR(p) as well as
separate tests for Skewness and Kurtosis. The univariate test is applied to the
residual of each equation, while the multivariate version can be computed by using
the residuals that are standardized by a Choleski decomposition of the variance-
covariance matrix. Note that, the result is dependent upon the ordering of the
variables.

Using notation presented in Lütkepohl [77], for orthogonalized VAR residuals, if
we call λ̂1 the multivariate skewness, λ̂2 the multivariate kurtosis, the multivariate
Jarque - Bera statistics λ̂3 is defined as:

λ̂3 = λ̂1 + λ̂2 (3.18)

Under the null hypothesis of multivariate Gaussian disturbance, λ̂1 = T b̂′1b̂1
6 ∼

χ2(K) and λ̂2 = T (b̂2− 3)′(b̂2− 3)
24 ∼ χ2(K), observe that b1 and b2 are K × 1
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vectors of skewness and kurtosis coefficients, that is third and fourth non-central
moment vectors of standardized residuals.

b̂1 = (b̂11, ..., b̂k1)′ ; b̂k1 = 1
T

T∑
i=1

ω3
kt

b̂2 = (b̂12, ..., b̂k2)′ ; b̂k2 = 1
T

T∑
i=1

ω4
kt (3.19)

where ωkt is orthogonalized VAR residual and the λ̂3 statistic is distributed as
χ2(2K). The corresponding statistics against the null hypothesis that the residuals
from the kth equation come from a univariate normal distribution are.

λ̂1k = T b̂2k1
6 ∼ χ2(1); λ̂2k = T (b̂2k2− 3)

24 ∼ χ2(1); λ̂3k = λ̂1k + λ̂2k ∼ χ2(2) (3.20)

Note that, this procedure the second is most used in statistical packages such as
STATA and EViews.

Since the VAR model is verified that it is adequate to describe the dynamic in
the system formed by the variables, follows other purposes of multivariate analysis
of time series such as Forecast in-sample or out-of-sample, the Granger causality test,
impulse response functions to shocks and forecast error variance decomposition.

3.3.4 Granger Causality

According to Lütkepohl [77], VAR models represent the correlations among a set
of variables, they can be used to investigate relationships between the variables of
interest. A specific type of relation was pointed out by Granger [54] and is known as
Granger – Causality. Let us consider here two variables. By definition y2t Granger
- causes y1t if the information of past and present values of y2t help for improving
the forecasts of y1t. Then y2t is not Granger – causes y1t if and only if Φ12 = 0, for
i= 1,2, ...,p. In other words, all of coefficients on lagged values of y2t are zero in the
equation for y1t of the model.

Formally, y1t fails to Granger-cause y2t if for all s > 0 the mean squared er-
ror of forecast y2t+s based on (y2t,y2t−1, ...) is the same as the MSE of forecast
y2t+s based on (y2t,y2t−1, ...) and (y1t, ...), that is MSE[Ê(y2t+s)|y2t,y2t−1, ...)] =
MSE[Ê(y2t+s|y2t,y2t−1, ...,y1t,y1t−1, ...)].

In general, among many versions of the Granger - causality test, three situations
can be highlighted:

• The first involves two variables and the test check whether a variable influences
the forecast of the other by testing the statistical significance of its coefficients
in the lags.

50



www.manaraa.com

3.3. ESTIMATION OF VAR PARAMETERS

• The second situation is that where involve more than two variables. In this
case, we test the influence of each individual variable as well as joint influence
of a set of independent variables on that considered as dependent.

• The third situation assumes that there is an interaction between all variables
included in a system of simultaneous equations such as VAR model estimation.
In this case, the test is implemented for all variables according to the number
of equations.

Clearly, Granger - causality does not imply true causality. It only implies fore-
casting ability. The hypothesis that y2t does not Granger cause y1t could be tested
simply by running the regression of y1t on lagged values of y1t and y2t and examining
whether the coefficient of the latter variable is significantly different from zero.

Test for Granger - Causality: Tests of whether y2t Granger - causes y1t in equa-
tion 3.1 or in standard form in equation 3.2 can be implemented using a standard
Wald F or χ2 test. Let’s consider a particular autoregressive lag p of y1t as linear
function of its own past values, plus past values of y2t. If y2t Granger causes y1t, then
same or all the lagged y2t coefficients values have non-zero effects. The null hypoth-
esis of y2t does not Granger causes y1t in the VAR is: H0 : φ21 = φ22 = ...= φ2p = 0,
which can be tested comparing the observed statistical and critical values.

F = (RSSr−RSSu)/p
RSSu/(T − 2p− 1) or χ2 = T (RSSr−RSSn)

RSSu
(3.21)

where RSSr and RSSu, are the residual sum of squared from restricted and unre-
stricted regression, y1t = µ1+Σφ1iy1t−i+u1t and y1t = µ2+Σφ1iy1t−i+Σφ2iy2t−i+u2t,
respectively.

If the statistic F is greater than the 5% critical value for an F (p,T − 2p− 1),
we reject the null hypothesis that y2t does not Granger cause y1t. For a regres-
sion with fixed regressor and Gaussian distributions, the test statistic F has an
exact F distribution, but for a regression with lagged dependent variables as in the
Granger-causality regressions, the test is only asymptotically valid. An asymptoti-
cally equivalent test is given by χ2, and we reject the null hypothesis if χ2 statistic
is greater than the 5% critical value for a χ2(p). Similarly, the null of y1 does not
Granger - cause y2t can be expressed in the VAR as. H0 : φ11 = φ12 = ...= φ1p = 0.

An alternative to the Granger-causality test is the procedure proposed by Dolado
and Lütkepohl [35]. The test consists in that, for a VAR(p) model one should estimate
the VAR(p+1) system to the data and perform a Wald test on the coefficients of
the first p lags only.
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3.3.5 Forecasting in VAR models

According to Zivot and Wang [123], in addition to analysing the relationship between
variables, forecasting is one of the objectives of multivariate time series analysis.
Forecasting from a VAR model is similar to forecasting from a univariate AR model.
That is, forecasting future value of yt, when the parameters Φi of the VAR(p) are
known and there are no deterministic terms of exogenous variables. The best linear
predictor, in terms of minimum mean squared error (MSE), of yt+1 or 1-step forecast
based on information available at time T is.

yT+1|T = Φ0 + Φ1yT + ...+ ΦpyT−p+1 (3.22)

Forecasts for longer horizon h (h-step) may be obtained recursively as: yT+h|T =
Φ0 + Φ1yT+h−1|T + ...+ ΦpyT+h−p|T , where yT+j|T = yT+j for j ≤ 0. The h-step
forecast errors may be expressed as yT+h − yT+h|T = ∑h−1

s=0 ΨsuT+h−s where the
matrices Ψs are determined by recursive substitution with Ψ0 = Ik and Φj = 0 for
j > p, Ψs =∑p−1

j=1 Ψs−jΦj .
The forecast are unbiased since all of the forecast errors have expectation zero

and the MSE matrix for yT+h|T is:

Σ(h) =MSE(yT+h−yT+h|T ) =
h−1∑
s=0

ΨsΣΨ′s (3.23)

That is yt+h−yT+h|T ∼ (0,Σ(h)).

3.3.6 Impulse response function

From subsection 3.3.3, an VAR(p) model, under the stability condition, equation 3.13
can be written as a linear function of the past innovations, that is a vector moving
average (VMA) or MA(∞) process. The coefficients in the matrices Ψs in equa-
tion 3.4, quantify the effect of a shock uit−s into the variable yit, that is, the elements
ψsij of the matrix Ψs is interpreted as the impulse response. ∂yit+s

∂ujt
= ∂yit
∂ujt−s

= ψsij ,

for i, j = 1, ...,T .
The set of coefficients Ψij = ψsij for i, j = 1, ...,T are called the impulse response

function (IRF). It describes the response of yit+s to a one-time impulse in yjt with all
other variables dated t or earlier held constant. Moreover, Lütkepohl [77] argue that,
the response of variable j to a unity shock in other variable k is plotted graphically to
get a visual impression of the dynamic interrelationship within the system. However,
this interpretation is only possible if var(ut) = Σu, is an diagonal matrix so that the
elements of ut are uncorrelated. One way to make the error uncorrelated is estimate

52



www.manaraa.com

3.3. ESTIMATION OF VAR PARAMETERS

the triangular structural VAR(p) model.

y1t = φ01 +φ′11yt−1 + ...+φ′1pyt−p + ε1t (3.24)

y2t = φ02 +α21y1t +φ′21yt−1 + ...+φ′2pyt−p + ε2t

y3t = φ03 +α31y1t +α32y2t +φ′31yt−1 + ...+φ′3pyt−p + ε3t

...

ykt = φ0kk+αk1y1t + ...+αkk−1yk−1t +φ′k1yt−1 + ...+φ′kpyt−p + εkt

Following Zivot and Wang [123], in matrix form, the triangular structural VAR(p)
model is:

Ayt = Φ∗0 +
p∑
i=1

Φ∗iyt−i + εt (3.25)

where A is lower triangular matrix with 1’s along the diagonal and the triangular
structural model 3.25 imposes the recursive causal ordering y1 → y2 → ... → yk.
These ordering means that the contemporaneous values of the variables on the left of
the arrow affect the contemporaneous values of the variables to the right on the arrow
but not vice-versa. These contemporaneous effects are captured by the coefficients
αij in 3.25. For example the ordering y1 → y2 → y3 imposes the restrictions y1t

affects y2t and y3t but y2t and y3t do not affect y1t; y2t affects y3t but y3t does not
affect y2t.

3.3.7 Forecast error variance decomposition

The forecast error variance decomposition (FEVD) gives information for a portion of
the variance of the forecast error in predicting yit+h which is due to variability in the
structural shocks εij between times t and t+h. Using the orthogonal shocks εt the
h-step ahead forecast error vector, with known VAR coefficients, may be expressed
as yt+h−yt+h|t = Σh−1

j=0Θjεt+h−j . For a particular variable yit+h, the forecast error
has the form:

yit+h− yit+h|t =
h−1∑
j=0

θji1ε1t+h−j + ...+
h−1∑
j=0

θikεkt+h−j (3.26)

Since the structural errors are orthogonal, the variance of the h-step ahead
forecast error is: var(yit+h − yit+h|t) = σ2

ε1Σ
h−1
j=0 (θji1)2 + ...+ σ2

εk

∑h−1
j=0 (θik)2, where

σ2
εj = var(εj). The portion of var(yit+h− yit+h|t) due to shock εj is then

FEV Dij(h) =
σ2
εjΣ

h−1
j=0 (θjij)2

σ2
ε1Σ

h−1
j=0 (θji1)2 + ...+σ2

εk

∑h−1
j=0 (θjik)2

(3.27)

In a VAR with K variables there are K2, FEV Dij(h) values which depends on
the recursive causal ordering used to identify the structural shocks εt and is not
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unique. It depends on the identification scheme. Thus, different causal ordering will
produce different FEVD values.

Traditionally, analysis of impulse response function has been the main objective
of interest in the applied SVAR, but not only a natural extension of FEVD concept
is the historical decomposition of observed time series.

According to Luektepohl [76], the Historical Decomposition (HD) is another way
of looking the contribution of the structural shocks to the observed series. Historical
decomposition, tells what portion of the deviation of yit from its unconditional mean
is due to the shock εj .

The structural shocks push the variables away from their equilibrium values.
The interpretation of historical decomposition not need for a reference value that
indicates when a shock is influencing the path of the variables. In that case, the
reference value is zero, and it is understood that deviations of the shocks below that
value are interpreted as negative shocks and deviations above as positive shocks.

3.4 Vector error correction model
According to Johnston and DiNardo [66], when the variables in the VAR are in-
tegrated of order one or more, the nonstationary variables suggests cointegrating
relations.

Economic theory often suggests that two or more economic variables should be
linked more or less closely. Although relationships among the variables are usu-
ally assumed to hold only in the long-run, economic forces are expected to act in
the direction of eliminating short-run deviations from these long term relationships.
Situations where there are r cointegrating vectors, which describe the long-run
relationships between variables, the vector error correction model is an appropri-
ate model which is suited for capturing relations between nonstationary variables
correctly and can be represent as:

∆yt = Φ0 + Πyt−1 +
p∑
i=1

Γi∆yt−i + ut (3.28)

where the error correction component Π =αβ′ and the vector autoregressive com-
ponent Γ are functions of the Φ′s. Specifically, Γj =−∑p

i=j+1 Φi for j = 1, ...,p− 1,
Π =−(I−Φ1− ...−Φp) =−Φ(1).

Note that, still in equation 3.28, in component Π = αβ′, α is the speed of
adjustment parameter. In addition, a large value of α indicates the mechanism of
adjustment has fast convergence to return long-run equilibrium in cases fo deviate
from it. The parameter β is a matrix of long-run coefficients or cointegrating vector.
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Following Johnston and DiNardo [66], the relevant procedure for analyse the
relationship between variables nonstationary in level, but linked consists of three
steps:

1. Determine the cointegrating rank, that is, the number of cointegrating relations.

2. Estimate the matrices of cointegrating β and adjustment α parameters.

3. Estimate the VAR incorporating the cointegrating relations, that is, estimate
VEC model.

3.4.1 Cointegration

According to Johansen [63], suppose that, there is long-run relationship between
yt and xt variables, then a linear combination of yt and xt can be directly taken
from estimating the following regression yt = β0 +β1xt+ut and taking the residuals
ût = yt − β̂0 − β̂1xt. If ût ∼ I(0), then the variables yt and xt are said to be
cointegrated.

In general let yt = (y1t, ...,ykt)′ variables in a K dimensional process, yt are
cointegrated of order (d,b), briefly yt ∼ CI(d,b), if all components of yt are I(d)
and there exists a linear combination zt = β′yt, with β = (β1, ...,βk)′ , 0 such that
zt is I(d− b). For instance, if all components of yt are I(1) and β′yt is stationary
I(0), them yt ∼ CI(1,1). The cointegration rank r is equal to the number of linearly
independent cointegration vectors.

Suppose that yt and xt are two variables integrated of order 1, that is yt ∼ I(1)
and xt ∼ I(1), by saying yt and xt are CI(1,1), this means that the regression equation
yt = βxt+ut makes sense because there is a long-run equilibrium relationship between
them. If yt and xt are not cointegrated, that is yt− βxt = ut is also I(1), they can
drift apart from each more and more as time goes on. Thus there is no long-run
equilibrium relationship between them. In this case the relationship between yt and
xt that we obtain by regression yt on xt is spurious.

According to Zivot and Wang [123], in many times series regression models is
required all variable to be I(0), so that the usual statistical results for the linear
regression model are valid. If some or all of the variables in the regression are I(1)
that is, in the presence of nonstationary variables, the usual statistical may not be
valid. That is, the regression has a high coefficient of determination R2, t - statistics
appear to be significant, but the results are without any economic meaning. The
regression output are not consistent that is the regression coefficients are inefficient
and the usual tests of statistics inference does not hold.
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One important case in which the usual statistical results do not hold is spurious
regression when all the regressor are I(1) and not cointegrated. Using the simple
equation yt = α0 +α1xt+ut we can consider four situations to choose for regression.

1. If yt ∼ I(0) and xt ∼ I(0), then the classical regression model is appropriate.

2. If yt ∼ I(i) and xt ∼ I(j), i , j, then the regression are meaningless.

3. If yt ∼ I(i); xt ∼ I(i) and the ut contains a stochastic trend. Regression
∆yt = α1∆xt+∆ut is appropriate. Note that, if one of the trends is deterministic
and the other is stochastic, first differencing each is not appropriate.

4. If yt ∼ I(i); xt ∼ I(i) and ui is stationary. Then yt and xt are cointegrated.

3.4.2 Testing for cointegration

Let the (K × 1) vector yt be I(1) with 0 < r < K cointegration vectors if there
exists an (r×K) matrix B′ such that B′yt ∼ I(0). Testing for cointegration may be
thought of as testing for the existence of long-run equilibrium among the elements of
yt. Cointegration tests cover two situations: (1) There is at most one cointegration
vector and (2) there are possible r, where 0< r <K cointegration vectors. Among
many procedures, two approaches will be described here. The Engle and Granger [42]
test related to the first situation and the Johansen [63] methodology for the second
situation.

Engle and Granger’s two-step procedure

Engle and Granger [42], show that if there is a cointegration vector a simple two-step
residual-based testing procedure can be employed to test for cointegration. In this
case, a long-run equilibrium relationship components of yt can be estimated by
running y1t = βy2t +ut, where y2t = (y2t, ...,ykt)′ is an ((K − 1)× 1) vector.

To test the null hypothesis that the yt is not cointegrated, we should test for
a unit root in the residuals described in subsection 2.1.4, ut ∼ I(1) vs ut ∼ I(0).
The hypothesis are H0 : ut = β′yt ∼ I(1) (no-cointegration) and H1 : ut = β′yt ∼
I(0) (cointegration). If the unit root hypothesis is rejected, the hypothesis of no-
cointegration is also rejected, thus, the cointegration tests are similar to the unit
root tests, the differences are founded in their critical values.

Mackinnon [79], provides tables based on simulation accurately enough for all
practical purposes. The potential problems with Engle - Granger procedure is that
the cointegrating vector will not involve y1t component. In this case the cointegrating
will not be consistently estimated from the OLS regression loading to spurious results.
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Estimation of the static model y1t = βy2t + ut is equivalent to omitting the
short-term component from the VEC model. If this results in autocorrelation in
the residuals, although the results will still hold asymptotically, it might create a
severe bias in finite samples. Because of this, it makes sense to estimate the full
dynamic model. Since all variables in the VEC are I(0), the model can be consistently
estimated using the OLS method, this approach leads to a better performance as it
does not push the short-term dynamic into residuals.

Johansen methodology

The Johansen [63] procedure is an alternative approach to test for cointegration
which allows to avoid some drawbacks for straightforward test the r unit roots and
avoids normalization problem existing in the Engle-Granger approach and test the
number of cointegrating relations directly. Because the Johansen procedure is based
on ML estimator, that is why, we need the time series to be multivariate normal.

The Johansen test procedure builds on the vector autoregression of order p, here
in a dynamic form or VEC model, equation 3.28 updated.

∆yt = Φ0 + Πyt−1 +
p−1∑
i=1

Γi∆yt−i + ut (3.29)

For yt nonstationary I(1) time series components, in order to get a stationary
error term ut, Πyt−1 should also be stationary. If the VAR(p) process has unit roots
then the coefficient matrix Π has reduced rank, rank(Π) = r < K. In fact, testing
for cointegration is equivalent to checking the rank of the matrix Π.

1) If Π has a full rank then all time series in yt are stationary;

2) If the rank of Π = 0, then there are no cointegrating relationships;

3) If 0< rank(Π) = r < K, this implies that yt is I(1) with r linearly independent
cointegrating vectors and m=K − r non-stationary vectors.

Since Π has rank r there exist K× r matrices with rank(α) = rank(β) = r such
that Π =αβ′ and β′yt is stationary, r is the number of cointegrating vector.

The VEC model becomes: ∆yt =αβ′yt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + ut,
with β′yt−1 ∼ I(0).

Algorithm for Johansen procedure

a) Specify and estimate VAR(p) model for yt;
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b) Determine rank(Π) equal to number of cointegrating vectors; the ML estimate
for β equals the matrix of eigenvectors corresponding to the r largest eigenvalue
of K ×K residual matrix;

c) If necessary, impose normalization and identifying restrictions on the cointegrat-
ing vectors;

d) Given the normalized cointegrating vectors estimate the resulting cointegrated
VEC model by ML.

In general, it is known that for a given r, the ML estimator of β defines the
combination of yt−1 that yields the r largest canonical correlations of ∆yt with
yt−1 after correcting for lagged differences and deterministic variables when present.
From these idea Johansen [63], proposes two different likelihood ratio tests of the
significance of these canonical correlations and there by the reduced rank of the Π
matrix: the trace test and maximum eigenvalue test.

a) Trace statistic test. Since the rank of the long-run impact matrix Π gives
the number of cointegrating relationships in yt, the Johansen likelihood ratio (LR)
statistic for determining the rank of Π are based on the estimated eigenvalues λ̂1 >

λ̂2 > ... > λ̂k of the matrix Π. The null hypothesis of r cointegrating vectors against
the alternative hypothesis of K cointegrating vectors, are H0(r0) : r ≤ r0 vs H1(r0) :
r > r0. The LR statistics called trace statistic is LRtrace(r0) =−T∑k

i=r0+1 log(1−λ̂).
The trace statistic checks whether the smallestK−r0 eigenvalues are statistically

different from zero. If rank(Π) = r0 then λ̂r0+1, ..., λ̂k should all be close to zero
and LRtrace(r0) should be small. If rank(Π) > r0 then some of λ̂r0+1, ..., λ̂k will
be nonzero, but less than 1 and LRtrace(r0) should be large. The asymptotic null
distribution of LRtrace(r0) in not chi-square but instead is a multivariate version of
the Dickey-Fuller unit root distribution which depends on the dimension K−r0 and
the specification of the deterministic terms.

b) Maximum eigenvalue statistic. The maximum eigenvalue test, tests the null
hypothesis of r cointegrating vectors against the alternative hypothesis of r + 1
cointegrating vectors, that is H0(r0) : r = r0 vs H1(r0) : r = r0 + 1. The LR statistic,
called maximum eigenvalue statistic is given by LRmax(r0) =−T log(1− λ̂r0+1).

The asymptotic null distribution of LRmax(r0) is a function of Brownian motion,
which depends on the dimension K − r0 and the specification of the deterministic
terms. Critical values for LRtrace(r0) and LRmax(r0) statistics are in Osterwald and
Lenum [94] for K − r0 = 1, ...,10.

The algorithm for sequential procedure to determining r cointegrating vectors
are:
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a) Test H0 : r0 = 0 vs H1 : r0 > 0. If we NRH0 then, there are no cointegrating
vectors among K variables in yt. If we RH0 then, there is at least 1 cointegrating
vector and proceeds to test.

b) Test H0 : r0 = 1 vs H1 : r0 > 1. If we NRH0 then, there is only one cointegrat-
ing vector. If we RH0 then, here is at least two cointegrating vectors. The sequence
is continued until we NRH0.

3.4.3 Estimation vector error correction model

Lets to consider a VEC model without deterministic terms, and update the model
in equation 3.30,

∆yt = Πyt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + ut (3.30)

where yt = (y1t, ...,ykt)′ denote K variable, rank(Π) = r and 0 < r < K so that
Π = αβ′, where α and β are (K × r) matrices with rank(α)= rank(β) = r. Also
we assume yt is I(1) process.

Writing the equation 3.30 in compact form we have equation 3.31

∆Y = ΠY−1 + Γ∆X + U (3.31)

where ∆Y = [∆y1, ...,∆yT ], Y−1 = [y0, ...,yT−1], Γ = [Γ1, ...,Γp−1]

X = [∆X0, ...,∆XT−1] with Xt−1 = [∆yt−1, ...,∆yt−p+1]′ and U = [u1, ...,uT ]

According to Breitung et al. [24], given a specific matrix Π, from equation 3.31
and using OLS estimator, the matrix of parameters Γ is given by

Γ̂ = (∆Y−ΠY−1)X′(XX′)−1 (3.32)

substituting in 3.31, after some algebra operations we get.

∆YM = ΠY−1M + Û where M = I−X′(XX′)−1X (3.33)

For any integer number 0< r <K an estimator Π̂ of Π with rank(Π) = r can be
obtained by reduce rank regression based on the model 3.33. Following Johansen [65],
the estimator is determined defining first the matrices.

S00 = T−1∆YM∆Y′; S01 = T−1∆YMY′−1; S11 = T−1Y−1MY′−1

next, is necessary to solve the generalized eigenvalue problem given by the equality
det(λS11−S′01S−1

00 S01) = 0.
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Let λ1 ≥ ...≥ λk the ordered eigenvalue with corresponding matrix of eigenvectors
V = [b1, ..., bk] satisfying the relation λiS11bi = S′01S−1

00 S01bi and normalized such
that V′S11V = IK. The reduced rank estimator of Π = αβ′ is then obtained by
choosing β̂.

Let β̂ = [b1, ..., bk], replacing αβ̂ in model 3.33 we have ∆YM =αβ̂Y−1M+ Û,
now using OLS estimator we have α̂= ∆YMY′−1β̂(β̂′Y−1MY′−1β̂)−1.

Known the values of matrices of cointegration β̂ and adjustment α̂ parameters,
the corresponding estimator of Π is Π̂ = α̂β̂

′. Using equation 3.32, we determine
the estimator of Γ , that is: Γ̂ = (∆Y− Π̂Y−1)X′(XX′)−1.

Under Gaussian assumption the ML estimators are consistent and jointly asymp-
totically normal.√

Tvec(Γ̂ − Γ ) d−−→N(0,ΣΓ) and
√
Tvec(Π̂−Π) d−−→N(0,ΣΠ)

3.5 Structural VAR and SVEC analysis
In the previews sections, we discusses the VAR and VEC models which analyse the
relation between a set of variables. However, there are some disadvantages to point,
for example, the many number of parameters, difficult to interpret due to complex
interactions between variables in the model, the impulse response are generally
not unique and interpretation is often not clear which set of impulse responses
actually reflects at a given point in the system. Due to this difficult, the VAR
require reduced form or structural restrictions to identify the relevant innovations
and impulse response.

In the literature there are different possible restrictions proposed, known as
structural VAR (SVAR) models, described by Bernanke [8], Blanchard and Quah [14]
and Sims [110] or Structural VEC (SVEC) models describe in Breitung et al. [24]
and King et al. [68].

According to Breitung et al. [24], Zivot and Wang [123], the general structural
models include deterministic terms and exogenous variables. It should be noted that
for the present study, both the deterministic term and the exogenous variables will
not be included in the model, as they do not influence the responses to impulses or
stochastic shocks respectively.

From VAR model 3.1 we obtain the corresponding SVAR model, equation 3.34
multiplying the equation 3.1 by matrix A, assuming that the matrix is nonsingular.

Ayt = Φ∗1yt−1 + ...+Φ∗pyt−p + εt (3.34)

whereΦ∗i = AΦ i are structural form parameter matrices and εt = Aut is a structural
error term with mean zero and covariance matrix Σε, that is, ε∼N(0,Σε), note that
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∑
ε = A∑

uA′ and the inverse of matrix A allows modelling instantaneous relations
among the variables in the system.

Following Kilian [67], Zivot and Wang [123], the three main types of structural
analysis are (1) Granger - causality tests, (2) impulse response function and (3)
forecast error variance decomposition, as well as historical decomposition.

According to Lüktepohl [77], the SVAR or SVEC models instead of identifying
the coefficients, the identification is realized in residuals of system, which are in-
terpreted as exogenous shocks. The goal of this identification is to obtain impulse
response functions and variance decomposition with a "more"causal meaning. Here
the problem is to know the effect of a unit shock of one variable onto another variable
while imposing a restriction. In the literature the terms short – run and long - run
are used, meaning that the effect of the shock lasts a short or a long time on the
other variables, respectively.

3.5.1 Identification structural shocks

According to Breitung et al. [24], if the process yt is I(0), the effects of shocks in the
variables of a given system are most seen in its Wold moving average (MA) represen-
tation, yt = ut +Ψ 1ut−1 +Ψ 2ut−2 + ..., where Ψ 0 = IK , Ψ s =∑s

j=1Ψ s−jΦj and
Φj is K ×K matrix of coefficients of VAR(p) model, equation 3.1. The coefficients
ψij of the matrices Ψ s is interpreted as the response to the impulse of structural
shocks in the system. Note that, obtain forecast error impulse responses is feasible if
Σu is diagonal, otherwise, the forecast error impulse responses are not valid, because
the underlying shocks are not likely to occur in isolation if the components of ut are
instantaneously correlated.

In practice, one way to obtain orthogonal innovations is to use Choleski decom-
position of the white noise covariance matrix Σu = PP′ such that P is a lower
triangular matrix with positive elements on the main diagonal.

According to Breitung et al. [24] and Lütkepohl [77] there are different procedures
used to non-sample information in specifying and then obtaining unique impulse
responses. The three most used are associated with the so-called A - model, B -
model and AB - model (see also Amisano and Giannini [1]).

The A - model

Lets the structural errors from equation 3.34 have the following MA representation

yt = Θ0εt +Θ1εt−1 +Θ2εt−2 + ..., (3.35)
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where the matrices Θj = ΨjA−1 for j = 1,2, ...; represent the response to structural
shocks εt assumed to be mutually uncorrelated. The relation between structural
innovations and residuals from the VAR model 3.1 are εt = Aut, which is called the
A - model. For this model, the identifying restrictions are imposed on A matrix
such that, the product Aut = εt has a diagonal covariance matrix. If it is plausible
that A has a one in the main diagonal, they are necessary K(K − 1)/2 restrictions
on A to ensure just identified shocks, consequently identified impulse response.

Summarizing, according to Breitung et al. [24] and Lütkepohl [77], in A - model,
the set of innovations εt is modelled in the system of equations as a function of
the residuals such that Aut = εt and the linear restrictions on A can be write in
explicit form as vec(A) =RAγA + rA, where γA represent all unrestrited elements
of A, RA is a suitable matrix with zero and one elements and rA is the vector of
normalized constants.

The B - model

In SVAR model equation 3.34, because the shocks are not observed, some assump-
tions are need to identify them. For instance we required that the structural shocks
should be orthogonal, and that the structural shock εt are assumed to be related to
the model residuals by linear relations ut = Bεt, where B is a K ×K matrix. Note
that we assume that for Aut = Bεt and the matrix A = IK .

Using the relation between model residuals and structural innovations, one can
write equation 3.34 as follows:

Ayt = Φ∗1yt−1 + ...+Φ∗pyt−p + Bεt (3.36)

where εt ∼ N(0,IK), Φ∗ are K ×K coefficient matrices, B is K ×K matrix such
that Σu = BΣεB′. Because the covariance matrix of εt are normalized with one in
diagonal, the covariance matrix of residuals became ∑u = BB′, where B is lower
triangular chosen by Choleski decomposition.

According to Lütkepohl and Krätzig [78], the equality ut = Bεt where the struc-
tural shock εt ∼ N(0,IK) is the so called B-model. Due to the symmetry of the
covariance matrix of ∑u, we specify only K(K + 1)/2 different equations and need
additional K(K − 1)/2 restrictions to be imposed to identify all K2 elements of B.

In summary, for B-model, the identification consists to exclude some linear
combinations of the structural shocks by imposing restriction of the form vec(B) =
RBγB + rB, where γB contains unrestricted elements of B, RB are the restricted
matrices with 0 or 1 elements, and rB is a vector of constant values normalized.
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The AB model

According to Lütkepohl [77], situation where is possible to consider both types of
restrictions, that is, from equation 3.36, Aut = Bεt where εt ∼ N(0,IK), we are
facing a model known as AB - model which relates the reduced form errors ut to
the underlying structural shocks εt.

Identification the structural shocks can be done, imposing restrictions on A and
B parameter matrices. Here for K-variables K(K − 1)/2 restrictions are necessary
for orthogonalizing the shocks because there are K(K−1)/2 different instantaneous
covariances. Detail of the procedures can be found in Breitung et al. [24] and
Galí [50].

For this model, from a previous relation between residuals of the model and
structural shock, we get ut = A−1Bεt, and the corresponding covariance matrix is∑
u = A−1BB′A−1′. Thus, we have K(K + 1)/2 equations. Meaning that we need

K2 elements for each matrix A and B, additionally 2K2− 1
2K(K + 1) restrictions

to identify all 2K2 elements of A and B at least locally. Even considering that the
matrix A has elements one on main diagonal, 2K2−K− 1

2K(K+1) restrictions are
needed for identification of the AB - model.

In order to avoid the large number of restrictions in most applications is used
the special cases just discussed. The A - model where B = IK or the B-model with
A = IK . According to Breitung et al. [24] and Lütkepohl [77], considering the general
case AB-model, the constraints are normally normalized and they can be written in
the form of linear equations.

vec(A) = RAγA + rA and vec(B) = RBγB + rB (3.37)

where RA and RB are possible restricted matrices with zero and ones, γA and γB
are unrestricted vectors with free parameters and finally rA and rB are vectors of
fixed parameters.

Identification SVEC model

If all or some variables in the system are integrated with r cointegrating vectors, which
describe the long-run relationships between variables, the VEC model, equation 3.30
is an appropriate model and the corresponding SVEC model is given by,

A∆yt = Π∗yt−1 + Γ ∗1∆yt−1 + ...+ Γ ∗p−1∆yt−p+1 + Bεt (3.38)

where Π∗ and Γ∗i are structural form parameters matrices and εt is a structural
error term, B is a K ×K matrix of impact of shocks and matrix A models the
instantaneous relations among the variables in the system.
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According to Pfaff [98], in order to identify the structural form parameters, we
need to considers the Beveridge-Nelson (Beveridge and Nelson [10]) moving average
representation of the variables yt if they adhere to the VEC model process as in
equation 3.30.

yt = Ξ
t∑
i=1

ui︸     ︷︷     ︸
I(1)

+
∞∑
j=0

Ξ∗jut−j︸          ︷︷          ︸
I(0)

+y∗0 (3.39)

where the matrix Ξ is defined as Ξ = β⊥
(
α′⊥(Ik−

∑p−1
i=1 Γ i)β⊥

)−1
α′⊥, with α⊥ and

β⊥ indicate orthogonal components of α and β respectively. The first term I(1) is
the common trend that drives the system of yt, the second term I(0) it bounded by
the infinite sum because the series of Ξ∗j converges to zero as j→∞ and y∗0 contains
all initial values.

According to Breitung et al. [24] and Pfaff [98], since the long-run effects of
shocks is captured on the common trend, this is the centre of modelling Structural
VEC model.

Replacing ut in equation 3.39 by A−1Bεt and then, assuming that εt ∼N(0,IK)
and the matrix A = Ik, then the impact of the short-run or transitory orthogonal
shocks are obtained by Ξ∗j B and the long-run by ΞB in the same way as in the
stationary VAR model.

For example in B - model using the relation ut = Bεt, is necessary at least
K(K−1)/2 restrictions to identify B. But if rank(ΞB) =K−r, where r is the rank
of the system yt, means that r columns have zeros in the matrix of long-run, which
corresponds to r structural innovations having transitory shocks, the remainder
m=K−r structural innovations have permanent shocks. To identify the permanent
shocks exactly we need m× (m− 1)/2 additional restrictions. Similarly r(r− 1)/2
additional contemporaneous restrictions needed to identify the transitory shocks.
Continuing with the assumption that A = IK , we have just enough restrictions to
identify B and ΞB. In this case we have a model exactly identified, if we impose
additional restrictions on the parameters, so it would be an overidentified model,
and the overidentified restriction could be tested.

3.5.2 Estimation SVAR and SVEC models

From subsection 3.5.1 concerning the identification of structural shocks and assuming
that the A-model and B-model are special cases for AB-model, we consider the
general case.
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Given the following SVAR model in compact form

AYt = AΦYt−1 + Bεt (3.40)

where Yt−1 = (yt−1, ...,yt−p)′; Φ = (Φ1, ...,Φp) and εt is assumed to be Normal
distribution with mean zero and covariance matrix IK , that is εt ∼N(0,IK).

Using the VAR model 3.1, the residuals form corresponding to SVAR model
3.40 have the form ut = A−1Bεt.

The log-likelihood function for a sample of observations y1, ...,yT is given by

lnl(Φ,A,B) = −KT2 ln(2π)− T2 ln|A−1BB′A′−1|

−1
2tr{(Y−ΦX)′[A−1BB′A′−1]−1(Y−ΦX)}

= const+ T

2 ln|A|2− T2 ln|B|2

−1
2tr{A

′B′−1B−1A(Y−ΦX)(Y−ΦX)′} (3.41)

where, Y := [y1, ...,yT ], X := [Y0, ...,YT−1] and the matrix rules are
|A−1BB′(A−1)′|= |A−1|2|B|2 = |A|−2|B|2 and tr(VW ) = tr(WV )
According to Lütkepohl [77], if there is no restrictions in reduced form VAR

parameters Φ, knowing A and B, the log-likelihood function in 3.41 is maximized
with respect to Φ by Φ̂ = YX′(XX′)−1. Next substitute Φ with Φ̂ in 3.41 to get
the concentrated log-likelihood.

lnlc(A,B) = const+ T

2 ln|A|2− T2 ln|B|2− T2 tr(A′B′−1B−1AΣ̃u) (3.42)

where Σ̃u = T−1(Y−ΦX)(Y−ΦX)′ is the covariance matrix of VAR residuals.
According to Breitung et al. [24], maximization of the concentrated log-likelihood

function 3.42 with respect to matrices A and B, subject to the structural restric-
tions 3.37, can be done by iterative methods because a closed form solution is
not available. In this context Amisano and Giannini [1], suggest to use a scoring
algorithm to estimate γA and γB parameters iteratively.γ̃A

γ̃B


i+1

=
γ̃A
γ̃B


i

+ lI
γ̃A
γ̃B


i

−1

S

γ̃A
γ̃B

 (3.43)

where l is the step length, I(*) denotes de information matrix of the free parameters
γA and γB, S(∗) is the score vector and the subscript refers to the iteration number
from which the signified estimator is obtained.

For specific SVAR model, with initial values, iteration stops when the relative
change in log-likelihood and the change in the parameters are no longer significant
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according to a certain chosen criterion. The ML estimator obtained with this pro-
cedure is asymptotically efficient and normally distributed, where the asymptotic
covariance matrix is estimated by the inverse of the information matrix, That is, the
ML estimator for ∑u is given by ∑̃r

u = Ã−1B̃B̃′Ã′−1, where Ã and B̃ are estimators
of A and B respectively.

We notice that the asymptotic covariance matrix ∑̃r
u only corresponds to the

reduced form estimate ∑̃u if the SVAR is exactly identified. When we have over-
identifying restrictions imposed on A and B (or B) the estimator differ from ∑̃

u. In
this case, the LR statistic is used to check validity of over-identifying restrictions,

LR = T (ln|Σ̃r
u| − ln|Σ̃u|) (3.44)

under the null hypothesis that the restrictions are valid, the statistic LR is asymptotic
χ2 distribution with degree of freedom equal to the number of over-identifying
restrictions. The null hypothesis is rejected if the LR statistics is greater then the
corresponding critical value.

According to Breitung et al. [24], the concentrated likelihood function 3.42 can
be used to estimate the structural parameters A and B for SVEC models. If there
is no restrictions imposed on short-run parameters, the estimated covariance matrix∑̃
u represents the residual covariance matrix from a reduced rank regression. If the

short-run parameters are restricted or restrictions are imposed on the cointegration
vectors, ∑u may be estimated using other estimator instead of the ML estimator.

In practice, if long-run constraints are considered, then the constraints are ex-
pressed as linear restrictions and maximization of concentrated likelihood function
in equation 3.42 can be done using the scoring algorithm suggested by Amisano and
Giannini [1].

In particular, if we consider that A = IK , restrictions may be imposed such
that some long-run shocks have no impact on the system variables and can be
written in implicit form as RΞvec(ΞB) = 0, where RΞ is an appropriate restriction
matrix. Using the rules of the operator vec, we can rewrite the restrictions as
RΞ(IK ⊗Ξ)vec(B) = RB,lvec(B) = 0, substitute Ξ by the estimator Ξ̂ obtained
from reduced form we have R̂B,l =RΞ(IK ⊗ Ξ̂).

This implicit constraint is transformed into the explicit form and used in the
maximization procedure of the SVEC model in combination with contemporaneously
constraints on elements of matrix B of the form vec(B) = RBγB. The procedure
works without problem even when there are more constraints on structural parame-
ters than are required for accurate identification. In these cases, over-identification
is tested by equation 3.44.
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3.5.3 Structural statistical inferences

As in the VAR models, some analyses performed after the parameter estimation
of structural models consists of a representation of impulse response functions and
consequent interpretation, forecast error variance decomposition as well as historical
decomposition.

From subsection 3.3.6 it is known that given a system of stationary variables
yt ∼ I(0), the set of residuals from the regression equations can be represented as a
moving average model where the corresponding coefficients represent the response
to the impulse of structural shocks in the system. Since residuals exhibit changes,
these changes are reflected in the variables involved in the system. Which causes
the effect of the impulses of the yt components associated with the residuals to be
transitory and disappear over time.

If SVEC model is applied in the study, the impulse response functions are com-
puted based on the VAR model with cointegrated variables, or a level version of
VEC model, which implies that the impulse responses Ψs may not converges to zero
as s→∞, consequently, some shocks will have permanent effects.

According to Bruggemann [28] inference on impulse response functions based
on bootstrap methods sometimes they have better small sample interval properties
compared with intervals based on asymptotic theory. Because in application we use
bootstrap confidence interval we will mention three types of bootstrap confidence
intervals.

a) Standard percentile interval. The method is based on the standard percentile
interval. In tribute to the author in the literature, the method is known as Efron
interval, (see Efron and Tibshinani [37]).

b) Hall’s percentile interval. The method is based on the confidence interval
of the empirical distribution. Using the same justification as above the method is
called Hall interval, (see Hall [57]).

c) Hall’s studentized interval. The method uses a studentized statistics to
construct the bootstrap confidence interval. The procedure is known as studentized
Hall, (see Hall [57]).

The procedure and significance of the forecast error variance decomposition, for
investigating the impacts of shocks on the SVEC system is similar to that presented
for VAR models in the subsection 3.3.7.
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3.6 Application of vector autoregressive models

3.6.1 Introduction

In this application, as described in Mulenga [85] we analyse the dynamics of Mozam-
bique real Gross Domestic Product (GDP), GDP deflator and the South Africa real
GDP, which here play the role of external shocks. Mozambique and South Africa
are neighbor countries with a continuous relationship based on the use of labor force,
infrastructures, resource exploration, cross-border trade and so on. Because of this
relationship and influence in the Mozambique economy, we chose South Africa real
GDP to serve as external shocks.

According to Mussagy and Allaro [89], the economic crises, changes in institu-
tional arrangement, policy changes and regime shifts among others can influence
macroeconomic analysis of time series data. In particular, Mozambique since 1975
had three changes in format and currency designation, beginning with the Metical
of Republic Popular of Mozambique in 1980, when the former Portuguese Shield was
abandoned, followed by the Metical of Republic of Mozambique in 1990 and finally
the New Metical of Mozambique in 2006, when three zeros were withdrawn in the
currency as a way to reduce inflation. On the other hand, the exchange law has
also been changed to adapt the standards of operations in different regimes from the
popular to the current market economy of a free circulation of people, goods and
services. For example, the exchange law of January 3/96 was changed to March law
11/2009. Given these constant changes, the macroeconomic series tend to exhibit
fluctuations and present cuts that create difficulty in finding long series for econo-
metric studies like this one. Therefore and due to the absence of long periods of the
series, we only obtained the annual series between 1990 to 2012.

For our tri-variable analysis, we use instead of structural vector autoregressive
model, the structural vector error correction analysis to take into account the vector
error correction and identify contemporaneous and long-run effects of shocks. The
identification is based on economic relationship between variables, inspired in Blan-
chard and Quah [14] analysis of aggregate supply and aggregate demand shocks,
interpreted as permanent and transitory shocks. In this application, we use both
short and long-run restrictions as Galí [50] and we interpret the aggregate supply, de-
mand and external shocks splitting them into permanent and transitory. Regarding
the estimation procedure, we use one stage Johansen approach (see Johansen [65]) to
estimate the SVEC model, where we placed two restrictions on the short-run effects
of shocks and two for long-run relation. In practice, we assume that prices are not
affected by contemporaneous supply shocks nor by external shocks. For long-run we
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consider that only an aggregate supply shock has permanent effects.
The application contribution relies on identifying aggregate supply and aggregate

demand shocks in the presence of external shocks to the economic growth of Mozam-
bique. That is, the investigation identifies the sources of shocks in macroeconomic
variables, that somehow helps the process of defining policies that can increase the
rate of sustainable economic growth. Therefore, we consider three sources of shocks
that are aggregate supply, aggregate demand and external shocks and we inspect
whether there are permanent or transitory shocks.

The section is organized as follows: after the introduction in subsection 3.6.1,
subsection 3.6.2 presents the data and statistical properties of the series, subsec-
tion 3.6.3 presents the vector error correction model specification and SVEC analysis
to identification of shocks from the aggregate supply, aggregate demand and exter-
nal activity. The subsection 3.6.4 reports the empirical results from both VEC and
SVEC analysis and, finally, the subsection 3.6.5 presents the main conclusions.

3.6.2 Data and statistical properties

For our study, we use three macroeconomic variables, two related to Mozambique
economy and one is referred to the neighbor country of South Africa, that is, the
Mozambique real Gross Domestic Product (MZGDP), representing the supply, the
Mozambique GDP deflator (PMZGDP), represent the demand and the South Africa
real Gross Domestic Product (ZAGDP), which represent the external shocks for
Mozambique economy. As explained in introduction, the application use annual
series from 1990 through 2012, collected from the World Bank database 1.

Generally the observations of the time series are not stationary, and do not present
a behavior that can be described by a linear function. In such cases, transformations
may be useful to smooth the variability over time of a single series. In particular,
we take logarithm to the series. For visualization of the behavior of the data series,
the Figure 3.1, presents the series.

The time series behavior shows nonstationarity for the series in level. So we apply
a formal unit root test for the series with the null hypothesis that the series has a
unit root, and include three lags in Dickey and Fuller regression to eliminate serial
correlation in the error term. From Augmented Dickey and Fuller, we have p-value
equal to 0.9478, 0.9448 and 0.9478 for Mozambique real GDP, Mozambique GDP
deflator and South Africa real GDP, respectively, that confirm the nonstationarity of
the series in level. Then we transform in stationary series making first differences, as
indicated by Augmented Dickey and Fuller p-value, equal to 0.0082 for Mozambique

1https://datacatalog.worldbank.org/search/indicators.
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Figure 3.1: The behavior of the series of Mozambique log real GDP, Mozambique
log GDP deflator and South Africa log real GDP, 1990-2012

real GDP, 0.0000 for Mozambique GDP deflator and 0.0289 for South Africa real
GDP, all less than 0.05.

Table 3.1: Correlations between pairs of log differences of the series

Variable (i,j) MZGDPt−1 MZGDPt MZGDPt+1

PMZGDPt -0.1886 -0.2862 -0.2828
ZAGDPt 0.1616 0.3629 0.3314
Variable (i,j) PMZGDPt−1 PMZGDPt PMZGDPt+1
ZAGDPt 0.0390 0.2563 0.2029

To verify if there is any relationship between the variables over time, we calculate
the Pearson linear correlation for all pairs of log differences of the series with lead-
lag of up to one period, as the Table 3.1 illustrates. The results indicate that all
correlations are below 2/

√
T that is, 0.43 meaning a weak relation between the

series. In particular, the correlations between Mozambique real GDP (output) and
Mozambique GDP deflator (prices) are all negative over time indicating that the
series develops in the opposite directions. While the external economic activity
represented by South Africa real GDP has a positive relationship with Mozambique
output and prices. That is, there are positive co-movements of the series over time,
which suggests a long-term equilibrium relationship2.

3.6.3 Structural VEC model specification and testing

Before estimating the parameters of the VEC or SVEC it is necessary to verify if the
required conditions for the adequacy of the selected model are satisfied. Once the
parameters of the model has been estimated, is necessary to check if the model is an
adequate description of the data. For this purpose, we perform the test for stability

2Correlations computed by STATA.
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condition of the system, the residual autocorrelation test, the residual normality test
and finally the cointegration test.

Regarding multivariate tests we use the multivariate Portmanteau test for au-
tocorrelation proposed by Hosking [61], as described in Lütkepohl [77], which is a
generalization of the univariate Ljung-Box test. For multivariate normality test, we
use the statistic proposed by Doornik and Hansen [36], which is a generalization
of Jarque and Bera normality test for univariate case. The test is based on sample
measures of multivariate Skewness and Kurtosis. In this case, before estimation the
VEC and SVEC models, it is necessary to know the number of cointegrating vectors
of the series. In this application we use the Johansen [63] procedure which uses
likelihood ratio (LR) tests to determine the number r0 of cointegrating vectors, as
the trace test. We reject the null hypothesis of r0 cointegrating vectors if the LR
statistics is greater than the critical value.

Next we unfold an important task in the multivariate analysis of time series
or in the study of the VAR models, that of verifying if there is any relationship
between the pairs of variables using the Granger - causality test (Granger [54]). In
our study we test Granger-causality between a pair of variables using the Dolado and
Lütkepohl [35] procedure, since our series are integrated and eventually cointegrated.
That is, for a VAR(p) model we fit VAR(p+1) system to the data and perform a
Wald test on the coefficients of the first p lags only.

Because in our system of variables, the Augmented Dickey and Fuller test in-
dicate that the series are nonstationary individually in level, the VAR analyse is
not adequate. Therefore, situations where there are r cointegrating vectors, which
describe the long-run relationships between variables, the VEC model, equation 3.28,
is an appropriate.

According to Breitung et al. [24], Zivot and Wang [123], the general SVEC
model include deterministic terms and exogenous variables. However, for our present
purpose the deterministic terms are of no importance because they are do not shape
the impulses in the system. Similarly, exogenous variables under the control of some
policy markets may not react to stochastic shocks, therefore they are ignored.

Hence, instead of considering a complete model we will consider the simplified
one.

A∆yt = Π∗yt−1 + Γ ∗1∆yt−1 + ...+ Γ ∗p−1∆yt−p+1 + Bεt (3.45)

where Π∗ and Γ∗i are structural form parameters matrices and εt is a structural error
term, B is a K ×K of impact of shocks and matrix A models the instantaneous
relations among the variables in the system.

Using our SVEC model with three variables, that is, the Output, Prices and
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External activity, we assume that all variables are integrated of order one, with
rank r = 2, which suggests two transitory shocks and one permanent shock. The
permanent shock we identify by difference m=K−r = 3−2 = 1, which corresponds
to one column with unrestricted elements on the long-run matrix and remaining
two columns with hard zeros. The two restrictions mean that the demand and
external shocks have no long term effects on variables, while the supply shock
is allowed to have on all variables. Because the total number of restrictions is
K(K − 1)/2 = 3(3− 1)/2 = 3, we replace the third restriction in B and we need
r(r − 1)/2 = 1 additional contemporaneous restriction to identify the transitory
shocks. So the two restrictions on the short-run matrix are that the first and third
shocks have no instantaneous effect on prices, that is, b21 = b23 = 0. In general we
impose two long-run independent restrictions and additional two contemporaneous
restrictions, to identify the supply shocks, demand shocks, and external shocks to
be traced in an impulse response analysis, as illustrated ahead in the application.

Short− run =


b11 b12 b13

0 b22 0
b31 b32 b33

 and Long− run =


c11 0 0
c21 0 0
c31 0 0


As described in subsection 3.5.3, given yt ∼ I(0), the set of residuals from the

regression equations can be represented as MA model where the coefficients are
known as response to the impulse of structural shocks in the system.

For our study, we are interested in having accumulated effects, so we add the
long-run effects of the matrices for all considered periods and because we apply the
SVEC model, the impulse response functions are computed based on the VAR model
with cointegrated variables, or a level version of VEC model, which implies that
the impulse responses Ψs may not converges to zero as s→∞, consequently, some
shocks will have permanent effects.

In practice, obtain forecast error impulse responses based on matrices related
to long-run and short-run is appropriate if the covariance matrix of residuals Σu
is diagonal, otherwise, the forecast error impulse responses are not valid, due to
underlying shocks that are not likely to occur in isolation if the components of ut
have instantaneously correlations. To avoid this problem, orthogonal shocks are
preferred for impulse response analysis.

Following Breitung et al. [24], one way to obtain orthogonal shocks is to use
Choleski decomposition of the covariance matrix Σu. If B is a lower triangular
matrix such that Σu = BB′ the orthogonal shocks are given by ut = Bεt , where the
forecast errors (ut) are linear functions of the structural innovations (εt), assuming
εt ∼N(0,IK).
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Hence, the MA representation is yt = Θ0ε1 + Θ1εt−1 + ..., where Θi = Ψ iB
for i = 1,2, ..., here Θ0 = B is lower triangular matrix with 1’s along the diagonal
and the triangular structural model, equation 3.39, imposes the recursive causal
ordering y1t→ y2t→ ...→ ykt. This ordering means that, an ε shock instantaneous
in variable y1t produce effects for all variables, while a shock in y2t cannot have
impact in y1t but only on other variables, and so on. If there is no order imposed by
the relations between the variables, Sims [110] suggests trying different orthogonal
orders in the identification until finding the one that is most appropriate. Regarding
impulse response statistical inference, we based on Bootstrap Efron Percentile and
construct 95% confidence intervals.

The forecast error variance decomposition, are another tool for investigating the
impacts of shocks in SVEC system. The FEVD gives information for a portion of
the variance of the forecast error in predicting yit+h which is due to variability in
the structural shocks between times t and t+h. Using the orthogonal shocks the
h-step ahead forecast error vector, with known SVEC coefficients, may be expressed
as yt+h − yt+h|t = Σh−1

j=0Θjεt+h−j . Since the structural errors are orthogonal, the
variance of the h-step ahead forecast error is: var(yit+h− yit+h|t) = σ2

ε1Σ
h−1
j=0 (θji1)2 +

...+ σ2
εk

∑h−1
j=0 (θjik)2, where σ2

εj
= var(εj) and the proportion of var(yit+h− yit+h|t)

due to shock εj is then FEV Dij(h) = var(εj)/var(yit+h− yit+h|t).
According to Breitung et al. [24], Zivot and Wang [123], when we want to make

an identification using Choleski decomposition, it is important to take into account
the order in which the variables are arranged in the system yt, because this order
influences significantly the results. In particular, impulse response functions as well
as forecast error variance decomposition are affected by the identification choice.

3.6.4 Empirical results

From data description, the ADF test found that the series are nonstationary in level
individually but stationary after first differences, therefore, in this case, the good
choice for analyze the set of these three variables is using the vector error correction
model. From the literature theory, if two or more variables are individually nonsta-
tionary they may be cointegrated. That is, two or more variables may have common
underlying stochastic trend along which they move together on a nonstationary path.
As the vector error correction model fits a vector autoregressive in which some vari-
ables in the vector autoregressive system are cointegrated, VEC should be a good
model.

In order to use the VEC model, first we apply the Johansen test for cointegration
to verify the relationship between variables over time, and then to determine how
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many cointegration equations exists. For that we run Johansen trace tests.

Table 3.2: Johansen trace test for cointegration, sample 1992–2012

maximum number of log trace critical
rank parameters likelihood eigenvalue statistics value 5%
0 12 194.509 – 62.332 29.68
1 17 217.321 0.886 16.706 15.41
2 20 225.101 0.523 1.147* 3.76
3 21 225.695 0.053 – –

The results in Table 3.2 show that for rank equal to 2, the trace statistic of
1.147 is less than its correspondent critical value 3.76 at the 5% level. So we cannot
reject the null hypothesis that there are two cointegrating equations and assume 2
cointegrating vectors. Using this evidence, we estimate the VEC parameters with
two cointegrating vectors.

Because we are interested in cointegrating relations, we report in Table 3.3, the
adjustment parameters and cointegration equations coefficients, where we notice
that only the coefficients for log South Africa GDP are not significant, while all
other adjustment α are statistically significant.

Table 3.3: Cointegrating and adjustment parameters (p-value in brackets)

Real MZGDP MZGDP Deflator Real ZAGDP
Cointegrating parameters

CE1 β1 1.0000[0.0000] – -2.7120[0.0000]
CE2 β2 – 1.0000[0.0000] -1.1480[0.0000]

Adjustment parameters
α1 -0.7200[0.0000] 0.1310[0.0000] 0.0940[0.5160]
α2 2.3210[0.0000] -0.3060[0.0020] 0.1200[0.9780]

With respect to results in Table 3.3, using the adjustment parameters, it can be
said that the Mozambique real GDP equation reverts to equilibrium regarding the
long run relation between home and foreign real GDP, but deviates with respect to the
second cointegration relation. For GDP deflator, the convergence result holds for the
relation between prices and foreign output, but not for the first cointegrating vector.
About foreign real GDP, we observe divergence with respect to deviations from
equilibrium in both cointegration relations. Finally notice that, the Mozambique
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real GDP has the fastest velocity to return to equilibrium in cases of deviation from
the first equilibrium relation compared to other equations.

In order to assess the behavior of the cointegrating vectors we plot them in
Figure 3.2, in-sample predicted values, where the graphics show oscillation above
and below the horizontal line zero, which indicates a stationary process.

Figure 3.2: Plot of the estimated error correction terms: CE1 and CE2

To verify the suitability of the model, we apply the multivariate Portmanteau
statistic for the presence of autocorrelation up to 12 lags indicate L̂B equal to 69.0855
with p-value equal to 0.9700 greater than 0.05, suggesting no autocorrelation in
residuals thus, we cannot reject the null hypothesis that there is no autocorrelation
at lag 12 for instance. The statistics for normality of residuals indicate that the
individual series, as well as the joint residuals, follow a Normal distribution. For
illustration we report a multivariate version of Doornik and Hansen statistics for
joint cases where it was obtained Skewness equal to 3.1269 with associated p-value
equal to 0.3725, Kurtosis 1.7736 with p-value 0.6207 and the joint test statistic 4.9005
with p-value equal to 0.5566, therefore obtaining all p-value greater than 0.05.

In order to investigate the relationship between variables and determine which
variable helps to improve the forecast of another over time we use Dolado and
Lütkepohl procedure, that is, we run the VAR(2) model and perform a Wald test
on the coefficients of the first lag only.

The results for Granger - causality test reported in Table 3.4, where it can be
observed that, the Mozambique GDP deflator and South Africa real GDP variables
both individually and together are helping to improve the forecast of Mozambique real
GDP, that is, we reject the null hypothesis that there is no Granger-causality between
Mozambique GDP deflator, South Africa real GDP variables and Mozambique real
GDP. While for Mozambique GDP deflator and South Africa real GDP equations,
because the p-value is greater then 0.05, we cannot reject the null hypothesis.
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Table 3.4: Granger - causality Wald statistics

Equation variable Excluded variable χ2 df p-value
Real MZGDP MZGDP Deflator 5.74 1 0.0166

Real ZAGDP 6.27 1 0.0123
ALL 6.55 2 0.0378

MZGDP Deflator Real MZGDP 0.18 1 0.6687
Real ZAGDP 0.84 1 0.3582
ALL 1.03 2 0.5987

Real ZAGDP Real MZGDP 0.85 1 0.3564
MZGDP Deflator 2.45 1 0.1173
ALL 3.23 2 0.1994

As the VEC model proved to be adequate, we continued to structural vector error
correction analysis, where we use the model to identify the supply shocks, demand
shocks and external shocks related to the impulse response of shocks imposing restric-
tions on the matrix of contemporaneous effects and long-run effects of shocks. With
restrictions on matrix B, we assume that, the contemporaneous of aggregate supply
shocks and external shocks do not affect GDP deflator variable. The two constraints
placed on the long-run matrix are that aggregate demand shocks and external shocks
do not have permanent effects on the variables, which means that only aggregate
supply shock has permanent effects. After the identification process, we estimate
SVEC B-model with short and long-run restrictions. The results indicate that the
SVEC model is over-identified with LR statistic χ2(1) = 2.2016 with associated p -
value of 0.1379, greater than 0.05, thus, the identification is valid.

We estimate the structural decomposition by computing the contemporaneously
effects matrix B, as well as the identified total long-run effects matrix ΞB. Based
on bootstrap in particular Efron interval, we obtained the estimates of matrices of
long-run and short-run, where the values of t-statistics are in brackets. As explained
in the specification and identification of the model, with 2 cointegrated vectors, we
have two columns with zero for long-run matrix as observed.

Short− run =


0.0160
[3.7850]

0.0039
[0.6383]

0.0094
[2.4447]

0 0.0029
[4.1757]

0

−0.0062
[−3.1299]

0.0092
[3.2668]

0.0034
[2.7511]

 ; Long− run =


0.0113
[2.4565]

0 0

0.0048
[2.5263]

0 0

0.0042
[2.4706]

0 0


These estimates suggest that supply shocks have a significant, positive long-run

effect on output, prices and South Africa real GDP, whereas the long-run effect of
demand shocks and external shocks are restricted to zero with respect to output and
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equal to zero for other variables. Regarding the contemporaneous impact of shocks,
most coefficients are statistically significant, only the lagged value of demand shocks
in the Mozambique real GDP equation is not significant3.

From estimated matrices, we can observe that Mozambique real GDP and Mozam-
bique GDP deflator variables are positively related with own and with other contem-
poraneous lagged shocks in the system, while the South Africa real GDP variable
is negative affected by lagged contemporaneous of supply shocks and positive with
contemporaneous demand shocks and own lagged shocks. In long-run impact matrix,
it’s clear that, each variable is only positively related with lagged of supply shocks.

To investigate the plausibility of the identification scheme on the structural VEC
model and learn about the effects of the different shocks in variables, we consider
two tasks, the impulse response functions and forecast error variance decomposition
analysis, of the structural shocks. Therefore, in our analysis we investigate the
impulse response functions, and the identification suggests they show concordance
with the theory regarding the long-run relationships between the variables in terms
of the direction and magnitude of the impact. The Figure 3.3 within a horizon of
eight periods, shows the impulse response functions with 95% confidence intervals
based on bootstrap replications of Mozambique real GDP (Output), Mozambique
GDP deflator (Prices) and South Africa real GDP (ZA Output) for each of the
identified structural shocks, supply, demand and external shocks, respectively.

The impulse responses in Figure 3.3 are consistent with theoretical priors, i.e.,
are in the expected direction. The aggregate supply shocks have a positive and
permanent impact on Mozambique real GDP, while for Mozambique GDP deflator
and South Africa real GDP the impact of Aggregate supply shocks is negative and
transitory, as expected. Positive aggregate demand shocks have a positive and
permanent impact on Mozambique real GDP, on Mozambique GDP deflator, as well
as on South Africa real GDP. Positive external shocks have a transitory impact
on Mozambique real GDP, that is, the shocks cause a temporary fluctuation in
output around the third period, followed by the expansionary impact. While for
Mozambique GDP deflator and South Africa real GDP the external shocks causes a
permanent and positive impact.

Moving to the second task in analysing the SVEC model, we report in Table 3.5
the proportion of forecast error variance decomposition of Mozambique real GDP,
Mozambique GDP deflator and South Africa real GDP account by the three shocks,
i.e., the supply shocks (SS), demand shocks (DS) and external shocks (ES) over five
horizons.

3Model parameters, impulse response functions and forecast error variance decomposition
computed by JMulti.
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Figure 3.3: SVEC accumulated impulse response functions

Table 3.5: SVEC forecast error variance decomposition of real MZGDP, real MZGDP
deflator and real ZAGDP

Real MZGDP MZGDP Deflator Real ZAGDP
lag SS DS ES SS DS ES SS DS ES
1 71.0 4.0 25.0 00.0 100.0 0.0 28.0 63.0 09.0
2 83.0 3.0 14.0 00.0 98.0 2.0 24.0 70.0 06.0
4 84.0 4.0 12.0 30.0 63.0 7.0 17.0 73.0 10.0
6 87.0 4.0 09.0 59.0 36.0 5.0 27.0 76.0 10.0
8 90.0 3.0 07.0 71.0 26.0 3.0 35.0 56.0 09.0

On the variance decomposition for Mozambique real GDP, it may be noted that
the long-run development of Mozambique real GDP is dominated by the history
of supply shocks, start with a percentage of 71 at the first period until 90 percent
at the end the eighth period. The long-run contribution of the demand shocks is
very small ranging from 3 to 4 percent. Regarding Mozambique GDP deflator, the
corresponding variance decomposition accounted by the long-run three structural
shocks, show that the long-run development is totally dominated by the history
of Mozambique demand shocks in the first period, followed by decreases over time
until 26% at the eighth period. Second, the percentage forecast error variance
decomposition due to supply shocks increases over time, starting with zero until 71%
in the eighth period. For South Africa real GDP, the variance decomposition, in
contrary to other past two situations, here the variance in long-run development is
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dominated by the demand shocks and supply shocks, and small in proportion due
to own variability about 10%.

3.6.5 Conclusions

In this application, we analyse the role of aggregate supply, aggregate demand and
external shocks in an open economy. Specifically, we study the dynamic of the
Mozambique real GDP with respect to real GDP deflator and external shocks repre-
sented by South Africa real GDP. The ADF test indicates that the three variables
are stationary after first differences, and the Johansen test for cointegration indicates
two cointegrating vectors where the first equation is composite by Mozambique real
GDP and South African real GDP, the second pair is composite by Mozambique
real GDP deflator and South Africa real GDP.

From the adjustment parameters, it can be said that the error correction mech-
anism for output and prices equations are opposite, since in the output equation,
the adjustment to equilibrium deviations start with an negative feedback followed
by an positive feedback, while in the prices equation, the adjustment start with an
positive feedback followed by a negative feedback. In addition, the output equation
have faster convergence to return to long-run equilibrium in cases of deviations from
this, compared to prices and external activity equations. From long-run matrix, we
notice that there are two transitory shocks and one permanent shock, and that all
variables in the system are affected by the structural supply shock.

Also from our results, the impulse response functions display the expected di-
rection, for illustration, the aggregate supply shocks have a positive and permanent
impact on Mozambique real GDP, while for Mozambique real GDP deflator and
South Africa real GDP, the impact of aggregate supply shocks is negative and tran-
sitory, as expected. With respect to forecasting error variance decomposition, we
notice that the long-run development of real MZGDP is dominated by its own sup-
ply shocks, the variance of real MZGDP deflator is dominated also by own demand
shocks. However, this predominance decreases over time giving rise to the influence
of supply shocks. Regarding the variance of real ZAGDP, it is mainly attributed to
demand and supply shocks.

Summarizing, we analyse the dynamic relations between three macroeconomic
time series related to the Mozambique economy and conclude that, the Mozambique
real GDP plays an important role in both cointegration relations, in the analysis
of impulse response function as well as the forecast error variance decomposition.
The knowledge of the relations among variables, allows the government to make
decisions taking into account these relationships. The study contributes to the
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analysis of macroeconomic data of the Mozambique economy in the presence of an
external variable, which helps the process of defining policies that increase the rate
of sustainable economic growth of Mozambique.
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Multivariate GARCH models

4.1 Introduction to MGARCH models

Starting from Chapter 2, in the literature it’s known that the ARCH model 2.7, the
Generalized ARCH, equation 2.8 and their extensions in section 2.3, were developed
for studying the volatility of univariate financial time series and are capable to cap-
ture particular characteristics, including asymmetry and high persistence in second
moments. However, when the goal is to analyse the co-movement of volatilities of
two or more financial time series, the univariate models are not adequate, in such
cases, the multivariate GARCH (MGARCH) models are more appropriate.

According to Bauwens et al. [6], one of the applications of MGARCH models
is the analysis of volatility relationship between several financial time series, or
investigate the relationship among markets. Early articles on multivariate GARCH
models include Engle et al. [45], Bollerslev et al. [20], Diebold and Nerlove [33]. The
first Multivariate GARCH model were that of Bollerslev et al. [20], called VECH
model, then many MGARCH models ware developed, such as BEKK-GARCH model
of Engle and Kroner [43], the Dynamic Constant Correlation (DCC) GARCH model
of Engle [40], the Varying Conditional Correlation (VCC) of Tse and Tsui [117], to
understand and predict the co-movements of multivariate time series.

Let rt denote a K × 1 vector of log returns at time t. The multivariate GARCH
model is defined as rt = µ+ Φirt−i + ut with ut = H1/2

t zt or ut ∼ N(0,Ht) and
zt ∼N(0,IK).

According to Lütkepohl [77], the simpler multivariate VAR-ARCH(p) model can
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be represented in the form:

vech(Ht) = Ω + A1vech(ut−1u′t−1) + ...+ Apvech(ut−pu′t−p) (4.1)

where vech(.) is an operator that stacks the columns of the lower triangular part of
its argument square matrix and:

• µ is a K × 1 vector of constants;

• Ω is a (K(K + 1)/2)× 1 vector of constants;

• Φi and Ai are K×K matrices of parameters for mean and variance equations;

• ut is a K×1 vector of error ofK returns at time t, with E[ut] = 0, cov[ut] = Ht;

• Ht is a K×K matrix of conditional variances and covariances of ut at time t;

• H1/2
t is any K×K positive definite matrix at time t such that Ht is the condi-

tional variance matrix of ut; H1/2
t may be obtained by a Choleski factorization

of Ht;

• zt is a K×1 random vector of IID errors such that E[zt] = 0 and var[zt] = IK .

The parameter µ is a vector of constants µi, which represents the constant in
the conditional mean equation. For now, it is not important to address them. It is
also assumed that the residuals ut are not linearly correlated over time, but there
has nonlinear serial dependence between residuals.

Following Bauwens et al. [6], the main problem in the MGARCH models is the
size of the conditional covariance matrices Ht, as it increases with the number of
variables in the system. For a small number of variables (K small), this problem
is not observed, becoming more evident when the number of variables increases,
as in the estimation process is such that the matrix Ht must be inverted which
makes the process less flexible making it difficult to obtain a parsimonious model as
desired. Another important estimation requirement is that the matrix of covariances
must be positive definite or invertible. In order to overcome this problem several
specifications are proposed in the literature.

According to Silvennoinen and Terasvirta [108], the different specifications of
MGARCH models can be divided into four categories: (i) models of the conditional
covariance matrix, In which the matrix Ht is modelled directly, featuring the VECH
and BEKK models; (ii) the factor models similar to the principal component analysis,
the category includes, for example, Factor-ARCH and GO-ARCH; (iii) the models
of conditional variances and correlations, where the matrix Ht is decomposed into
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matrix of conditional correlation Rt and diagonal matrix of conditional variances
Dt; (iv) and finally, the nonparametric and semiparametric models, which is an
alternative to parametric estimation of the conditional variance structure.

4.2 Conditional covariance MGARCH models

4.2.1 VECH model

In the class of Conditional covariance matrix, the first multivariate GARCH model
was introduced by Bollerslev et al. [20], which is called VECH model. It is much
general compared to the subsequent formulations. In the VECH model, every condi-
tional variance and covariance is a function of all lagged conditional variances and
covariances, as well as lagged squared residuals and cross-product of residuals and
lagged values of the elements of Ht. The VECH model can be express as:

vech(Ht) = Ω +
p∑
i=1

Aivech(ut−iu′t−i) +
q∑
j=1

Bjvech(Ht−j) (4.2)

where Ht is the covariance matrix of the residuals, Ω is an (K(K + 1)/2)× 1 vector
of constants , Ai and Bj are K(K + 1)/2×K(K + 1)/2 parameter matrices, ut−i
is an K × 1 vector and K is the number of variables. Note that, from equation 4.2,
it can be seen that VECH(p,q) model is multivariate extension of the GARCH(p,q)
model, that is VAR-MGARCH(p,q).

The representation in 4.2 is very general and flexible but there is a disadvantage
that only a sufficient condition for Ht to be positive definite for all t is not restrictive.
Furthermore the number of parameters is (p+q)×(K(K+1)/2)2+K(K+1)/2 which
is excessively large as N increases. For example, if p= q = 1 and K = 2, the number
of parameters is 21, if K = 3 it is 78. This may cause computational difficulties,
which implies that in practice the VECH model is used only in the bivariate case.

4.2.2 Diagonal VECH model

To improve parsimony Bollerslev et al. [20], proposed diagonal VECH (p,q) or
DVECH (p,q) model. Where the coefficient matrices Ai, i= 1, ...,p and Bj , j = 1, .., q
are assumed diagonal. In this case, the conditional covariance between ui,t and uj,t,
that is hij,t depends only on lagged cross-products of the two shocks involved and
lagged values of the covariance itself. The DVECH(p,q) model is given by:

Ht = Ω +
p∑
i=1

A∗i � (ut−iu′t−i) +
q∑
j=1

B∗j �Ht−j (4.3)
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where � denotes the Hadamard product, that is, element-by-element product; Ω, is
theK×K symmetric matrix of constant, A∗i = diag(vech(Ai)), B∗j = diag(vech(Bj))
and Ai, Bj are K ×K symmetric matrices with elements αij and βij respectively.
Each covariance equation in 4.3 can be specified in scalar form as: hij,t = ωij +
αijui,t−1uj,t−1 + βijhij,t−1.

The matrix of residual covariances Ht is positive definite for all t and the number
of parameters is reduced to (p+ q + 1)(K(K + 1)/2), as no interaction is allowed
between the different conditional variances and covariances. For example, if p= q = 1
and K = 2 then the number of parameters for DVECH(1,1) model is 9, and if K = 3
it is 18.

According to Bauwens et al. [6], Engle and Kroner [43] and Ledoit et al. [72],
assuming that Ht is positive definite, the DVECH(p,q) model from equation 4.3
is ensured to be covariance stationary if wii > 0, for ∀i = 1, ...,K. All elements of
Ai, i= 1, ...,p and Bj , j = 1, ..., q, all eigenvalues of

p∑
i=1

Ai +
q∑
j=1

Bj are less than one

in modulus.

4.2.3 BEKK model

According to Bauwens et al. [6], because it is difficult to guarantee the positivity
of Ht in the VECH representation without imposing strong restrictions on the
parameters, based on earlier work by Baba et al. [4], Engle and Kroner [43], propose
a new parametrization for Ht and call BEKK (p,q) model, therefore, the acronym
BEKK refers to the initial letter of the authors Baba, Engle, Kraft and Kroner, who
developed the multivariate GARCH model in a preliminary version.

Ht = ΩΩ′+
p∑
i=1

K∑
k=1

(
A′kiut−iu′t−iAki

)
+

q∑
j=1

K∑
k=1

(
B′kjHt−jBkj

)
(4.4)

where Ω is a lower triangular matrix with (K(K + 1)/2) parameters, Ai and Bj

denote K ×K matrices with K2 parameters each. The BEKK model is covariance
stationary if and only if the eigenvalues of

p∑
i=1

K∑
k=1

Aki⊗Aki +
q∑
j=1

K∑
k=1

Bkj ⊗Bkj are

less than one in modulus, where ⊗ denotes the Kronecker product of two matrices.
Even restricting to the model of the first order, empirical applications often

involve the highly simplification version. For example, when both A and B are
assumed to be diagonal matrices, the model is called Diagonal BEKK, proposed
by Bollerslev et al. [20]. The main advantage in Diagonal BEKK model is that
the number of parameters to be estimated decrease and the new parametrization
guarantees that Ht be positive definite, if ΩΩ′ is a positive definite matrix.
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Note that for VECH, DVECH and BEKK models the conditional covariance
matrices Ht are imposed to be positive definite for each t. These requires complicated
restrictions on the off-diagonal elements.

4.3 Conditional correlations MGARCH models

Following Silvennoinen and Terasvirta [108], the models in the class of Conditional
Correlations (CC), are based on the decomposition of the conditional covariance
matrix Ht, into a matrix of conditional correlations Rt, and a diagonal matrix of
conditional variances Dt, that is:

rt = µ+ Φirt−i + ut ; ut = H1/2
t zt where Ht = DtRtDt (4.5)

The class of CC-MGARCH models are considered to be the simple in terms of rep-
resentation and estimation, as the number of parameters to be estimate increases
gradually as the number of variables increases. In this category the covariance be-
tween variables hij,t = ρij,t

√
hii,t×hjj , where the variances hii and hjj are obtained

by a univariate GARCH process discussed in chapter 2. The correlations ρij show
how the series of residuals move together. The CC - MGARCH models, include
Constant Conditional Correlation (CCC), Dynamic Conditional Correlation (DCC)
and Varying Conditional Correlation (VCC) models.

4.3.1 Constant conditional correlation

The Constant Conditional Correlation (CCC) GARCH model was proposed by Boller-
slev [17], assuming that the conditional correlations between the elements of ut are
time-invariant. By definition a process ut is called CCC - GARCH(p,q) model if the
matrix of variances Dt = diag(h1/2

11,t, ...,h
1/2
kk,t), and the correlation matrix R = ρij is

symmetric positive definite with ρii = 1, for ∀i.

Ht = Ω +
p∑
i=1

Aiu2
t−i +

q∑
j=1

BjHt−j (4.6)

where Ω is a K × 1 vector with positive coefficients Ai and Bj are K ×K matrices
with non-negative coefficients.

The individual conditional variances and conditional covariances are:

hii,t = ωii +αiiu
2
ii,t−1 + βiihii,t−1 ; i= 1, ...,K (4.7)

hij,t = ρij
√
hii,thjj,t ; for i , j
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4.3.2 Dynamic conditional correlation

The assumption that the conditional correlations are constant may seem unrealis-
tic in many empirical applications. Engle [40] and Tse and Tsui [117] propose a
generalization of the CCC model of Bollerslev [17] by making the conditional cor-
relation matrix time-dependent. The model is then called a Dynamic Conditional
Correlation (DCC) model. Here we will just focus on DCC-GARCH model proposed
by Engle [40], where the matrix of variances Dt are diagonal with variances hii
described by a univariate GARCH(1,1) process.

Dt = diag(h1/2
11,t, ...,h

1/2
kk,t) where hii,t = ωii +αiiu

2
ii,t−1 + βiihii,t−1 (4.8)

From equation 4.5, where rt = µ+ Φirt−i + ut, ut = H1/2
t zt and Ht = DtRtDt,

The process ut is called DCC - GARCH model if the conditional correlation matrix
Rt is defined as:

Rt = diag(q1/2
11,t, ..., q

1/2
kk,t)Qtdiag(q1/2

11,t, ..., q
1/2
kk,t) (4.9)

and Qt = (qii,t) is the K×K symmetric positive definite matrix which has the form:

Qt = (1−λ1−λ2)Q +λ1zt−1z
′
t−1 +λ2Qt−1 (4.10)

note that zi,t is a standardized residuals, λ1 and λ2 are adjustment parameter, they
are non-negative and satisfy λ1 + λ2 < 1 and Q = Cov(ztz′t) is the unconditional
variance matrix of standardized residuals.

According to Bauwens et al. [6], the main drawback of the model is that all con-
ditional correlations follow the same dynamic structure. The number of parameters
to be estimated is given by (K + 1)(K + 4)/2, relatively smaller compared to the
number obtained in the BEKK model for cases where K is small. When the number
of variables increases to continue to have parsimonious results and decrease the
complexity in estimation DCC parameters, the process is performed in two steps.

4.3.3 Varying Conditional Correlation

The Varying Conditional Correlation (VCC) model proposed by Tse and Tsui [117]
uses a nonlinear combination of univariate GARCH model with time-varying cross
equation weights to model the conditional covariance matrix of errors. The VCC
- GARCH model decomposes the conditional variance and covariances Ht into
conditional variance matrix Dt and the conditional correlation matrix Rt, where
Dt = diag(h1/2

11,t, ...,h
1/2
kk,t). The variance hii,t follows a univariate GARCH(1,1) model,

hii,t = ωii+αiiu
2
ii,t−1 +βiihii,t−1 and the conditional covariance following a dynamic
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process, hij,t = ρij,t
√
hii,thjj,t. Because the correlations ρij,t vary with time, this

model is known as the VCC - GARCH model.
The time varying conditional correlation matrix Rt is generated by the equation:

Rt = (1−λ1−λ2)R +λ1Rt−1 +λ2Ψt−1 (4.11)

where R = {ρij} is a K ×K positive definite parameter matrix with ρii = 1 and
Ψt−1 is a K ×K matrix whose elements are functions of the lagged observations of
ut. The parameters λ1 and λ2 are assumed to be non-negative with the additional
constraint that λ1 + λ2 < 1. Thus, Rt is a weighted average of R, Rt−1 and Ψt−1.
Hence, if Ψt−1 is a well-defined correlation matrix, that is, positive definite with
unit diagonal elements, Rt will also be a well-defined correlation matrix.

The sample correlation matrix of {ut−1, ...,ut−m}, denoted by Ψt = {ψij,t}, is
computed as follows:

ψij,t =
∑m
k=1ui,t−kuj,t−k√

(∑m
k=1u

2
i,t−k)(

∑m
k=1u

2
j,t−k)

; 1≤ i < j ≤K (4.12)

Note that, for DCC or VCC, if λ1 = λ2 = 0, the model reduces to CCC model.

4.4 Estimation of multivariate GARCH models

4.4.1 Testing multivariate residual behavior

According to Bauwens et al. [6], before an MGARCH model is fitted it is necessary
to ensure that the series are stationary. For these proposes its common to use the
Augmented Dickey and Fuller test or another one such as Phillips and Perron test
or KPSS1 stationarity test. Its necessary also to check whether the residuals present
evidence of univariate and multivariate ARCH effects and how they behave compared
with the Normal distribution, as well as also important to check the adequacy of the
MGARCH model specification after estimation.

Because the univariate tests are considered in chapter 2, section 2.1, in this
chapter, we focus on the multivariate tests described in chapter 3, section 3.3,
which include the multivariate Ljung - Box test proposed by Hosking [61], which
is a generalization of the univariate Ljung - Box Portmanteau (or Q) test for a
white noise. This diagnostic check is a first step, required to ensure the consistent
estimation of the mean process and thereby obtain the appropriately estimated error
terms. Next it is applied the multivariate Lagrange multiplier test for ARCH effects
in joint residuals and the multivariate normality test, which is a multivariate version

1Due to Kwiatkowski, Philips, Schmidt and Shin [71].
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of Jarque and Bera [62] normality test. In addition to the formal testing, three
graphical representations are also used to verify the adequacy of the model. One
plot for each equation includes a residual plot, an empirical distribution plot of the
autocorrelation function (ACF) and partial autocorrelation function (PACF) of the
residuals and their squares.

Because in the chapters before 1-3, the multivariate ARCH effect test was not
discussed, it is now appropriate to present this test.

Multivariate test for Heteroskedasticity

According to Engle [39] and Lütkepohl [77], the Multivariate Lagrange Multiplier
(MLM) test is a standard tool to detect multivariate ARCH effect. Lets consider
ut = (u1t, ...,ukt) a vector of residuals from a fitted VAR. The multivariate LM test
for ARCH is based on the following auxiliary regression:

vech(utu′t) = β0 + B1vech(ut−1u′t−1) + ...+ Bqvech(ut−qu′t−q) + vt (4.13)

where vt assigns a spherical error process and vech is the columns stacking operator
for symmetric matrices that stacks the columns from the main diagonal.

The dimension of β0 is 1
2K(K+1) and for matrices Bi is 1

2K(K+1)× 1
2K(K+1).

The null hypothesis is H0 : B1 = ... = Bq = 0 against H1 : ∃Bi , 0 for i = 1, ..., q.
Denoting Ω̂vech the resulting residual covariance matrix and corresponding matrix
obtained for p=0 by Ω̂0, the test statistics is defined as:

MLMARCH(q) = 1
2TK(K + 1)−Ttr(Ω̂vechΩ̂−1

0 ) (4.14)

Under the null hypothesis, the MLM -statistic is asymptotically distributed as
χ2(qK2(K + 1)2/4), where K is the number of series of residuals, q is the number
of lags in auxiliary regression. The null hypothesis is rejected if MLM(q) > χ2

α(.),
which means that, at least one series of residual has ARCH effect. The MLM test is
also useful to check for remaining ARCH in the residual of a fitted GARCH model.
In that case, the residual ut = (u1t, ...,ukt) is replaced by standardized residuals
zt = (z1t, ..., zkt) and each zit = uit/

√
hit.

4.4.2 Maximum likelihood estimation for MGARCH models

The method of maximum likelihood estimation (MLE) is the most common approach
used in the estimation of the vector of unknown parameters θ of both univariate and
multivariate GARCH models, under the assumption of independently and identically
distributed normally standardized residuals. However, the assumption of normality
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of the residuals is often violated and difficult to justify in many financial data. This
has motivated the use of alternative parametric distributional assumptions such
as the standardized Student t distribution with v ≥ 2 degrees of freedom or the
generalized error distribution. An alternative method to the MLE based on the
Normal density is the quasi-maximum likelihood estimator proposed by Bollerslev
and Wooldridge [19]. Because our application is related to the conditional variance
and correlation GARCH models, we describe de MLE only for these category of
multivariate GARCH models.

From section 4.3, the conditional variance and correlation models are defined as
Ht = DtRtDt for ut = H1/2

t zt and zt
IID∼ N(0,IK).

When the standardized errors zt, are multivariate Gaussian distributed, the joint
distribution of zt = (z1t, z2t, ..., zkt), with E(zt) = 0 and E(z′tzt) = I, for t = 1, ...,T ,
is given by

f(zt) =
T∏
t=1

1
(2π)K/2

exp
{
−1

2z′tzt
}

(4.15)

The corresponding likelihood function for zt = H−1/2
t ut is:

L(θ) =
T∏
t=1

1
(2π)K/2|Ht|1/2

exp
{
−1

2u′t|Ht|−1ut
}

Taking logarithm of the likelihood function where Ht = DtRtDt and using a linear
transformation we get the log-likelihood.

log(L(θ)) = −1
2

T∑
t=1

(
Klog(2π) + log(|Ht|) + u′tH−1

t ut
)

= −1
2

T∑
t=1

(
Klog(2π) + log(|DtRtDt|) + u′tD−1

t R−1
t D−1

t ut
)

(4.16)

= −1
2

T∑
t=1

(
Klog(2π) + 2log(|Dt|) + log(|Rt|) + u′tD−1

t R−1
t D−1

t ut
)

According to Engle and Sheppard [47], the estimation of the log-likelihood for the
DCC model is made in two steps. In the first step Rt is replaced by the identity
matrix IK , which results in the quasi-likelihood function:

log(L1(φ)) =
K∑
i=1

−1
2

T∑
t=1

[
log(hit) + u2

it

hit

]
+ constant

 (4.17)

From this first step, the parameter vector φ= (φ1, ...,φK) is estimated. When φ is
estimated, the conditional variance hit is also estimated for each serie, zt = D−1/2

t ut
and then Q = E(ztz′t) can be also estimated. After the first step only λ1 and λ2 are
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unknown. These parameters are estimated in the second step using the correctly
specified log-likelihood and the quasi - likelihood function given by:

log(L2(ψ)) =−1
2

T∑
t=1

(
Klog(2π) + 2log(|Dt|) + log(|Rt|) + z′tR−1

t zt
)

Since Dt is constant when conditioning on the parameters from step one, we can
exclude the constant terms and maximize:

log(L∗2(ψ)) =−1
2

T∑
t=1

(
log(|Rt|) + z′tR−1

t zt
)

(4.18)

A full maximum likelihood estimator is consistent as well as the two-step procedure
estimator, providing very similar results.

4.4.3 Forecast and evaluation MGARCH models

After fitting the MGARCHmodel, one might be interested in determining the forecast
of the conditional covariance matrix Ht+k. As the representation of the conditional
covariance matrix Ht varies with the model specified, the forecast will depend on
the underlying structure. Forecasting the covariance matrix Ht+h = Dt+hRt+hDt+h

using conditional correlation models, namely DCC and VCC, requires a two-step
procedure. In the first step, the forecast is for conditional variance matrix Dt+h and
in the second step is for the conditional correlation matrix Rt+h.

According to Engle and Sheppard [47], the h-step ahead forecast of Dt+h of a
standard GARCH(1,1) is given by:

E(Dt+h|Ft) = diag(
√
E(h1,t+h|Ft), ...,

√
E(hk,t+h|Ft)) (4.19)

where
E(hi,t+h|Ft) =∑h−2

i=1 ω(α1 + β1)i + (α1 + β1)E(hi,t+1|Ft) and
E(hi,t+1|Ft) = ω+α1u2

i,t + β1hi,t.
For nonlinear processes,
Qt+h = (1−λ1−λ2)Q +λ1(zt+h−1z

′
t+h−1) +λ2Qt+h−1, we have

E(zt+h−1z
′
t+h−1|Ft) = E(Rt+h−1|Ft) = E(Q∗−1

t+h−1Qt+h−1Q∗−1
t+h−1|Ft).

Since E(Q∗−1
t+h−1Qt+h−1Q∗−1

t+h−1|Ft) is unknown, the h-step ahead forecast of the
correlation cannot be directly obtained. However, there exist two methods that
approximate this forecast.

The first method assumes the approximation E(zt+1z′t+1|Ft)≈Qt+1 in order to
have h-step ahead forecast of Q, that is:

E(Qt+h|Ft) =
h−2∑
i=0

(1−λ1−λ2)Q(λ1 +λ2)i + (λ1 +λ2)h−1Qt+1
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and Rt+h = Q∗−1
t+hQt+hQ∗−1

t+h , where Q∗t+h is a diagonal matrix with the square root
of the diagonal elements of Qt+h.

The second method assumes Q≈R and E(Qt+1|Ft) = E(Rt+1|Ft). Using this
approximation, we can forecast Rt+h directly using the relationship:

E(Rt+h|Ft) =
h−2∑
i=0

(1−λ1−λ2)R(λ1 +λ2)i + (λ1 +λ2)h−1Rt+1 and (4.20)

E(Ht+h|Ft) = E(Dt+h|Ft)E(Rt+h|Ft)E(Dt+h|Ft) = Ht+h = Dt+hRt+hDt+h

(4.21)
Evaluation the model. We conduct the evaluation of model performance by assessing
in-sample forecast accuracy measure either by Mean Absolute Error (MAE) or by
Root Mean Squared Errors (RMSE). In particular, upon deciding the model as to
constant versus non-constant correlation, we inspect the performance of the model
over the full sample and in each sub-sample regarding the variance, the covariance
and the correlation forecasts.

MAEij = 1
T

T∑
k=1
|ρik− ρ̂ik| ; RMSEij =

√√√√√ 1
T

T∑
k=1

(ρik− ρ̂ik)2 (4.22)

where we use ρij,t = cor(rit, rjt) as the proxy for realized correlation. If the evaluation
regards the performance of variance or covariance forecast, we use r2

it as the proxy for
realized variance and covij,t = cov(rit, rjt) as the proxy for realized covariance, and
ρ̂ij , ĥii and ˆcovij,t are the estimated conditional correlation, variance and covariance,
respectively.

4.5 Application for multivariate GARCH models

For multivariate GARCH model application, we inspect the eventual empirical rela-
tion between exchange rates and commodity prices across alternative exchange rates
behavior, that its appreciation, depreciation and stability. Namely, we apply the
Constant Conditional Correlation GARCH model of Bollerslev [17], the Dynamic
Conditional Correlation GARCH model of Engle [40] and the Varying Conditional
Correlation GARCH model of Tse and Tsui [117], to Mozambique related data.

It should be noted that this application is an extension of the results presented
in the XI workshop on Statistics, Mathematics and Computation in Portalegre 2017,
whose final article was submitted for publication, Mulenga et al. [86].
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4.5.1 Data description

Mozambique is an emerging economy where resources are little explored. The country
is economically linked to neighbor countries from workforce to the development of
infrastructure such as port, roads and airports which are shared. The South African
economy is linked to the mining resources, and Coal measured in Great Britain Pound
is one of them. On the other hand, Mozambique has a growing natural resources
activity, which actually raised the discussion on Dutch disease. Altogether, the
eventual link among exchange rates and Coal is inspected, in particular considering
different periods distinguished by specific behavior of the exchange rate, namely,
appreciation, depreciation and stability.

For this study we use a multivariate GARCH model with three variables to
analyse the co-movement of volatilities and relationship between the Coal of Africa
(CZA), collected from finance.yahoo.com2, the Mozambican New Metical (MZN)
against South African Rand (ZAR) and Great Britain Pound (GBP), collected from
OANDA.FX rates3.

The daily time series span from January 4, 2010 to December 30, 2014. Note
that holidays and weekends were removed, remaining a sample of 1294 observations.

The Figure 4.1, shows the behavior of CZA prices and the exchange rates. The
graph of CZA displays a continuing decline, the MZN/ZAR exchange rate suggests
four periods, the period of depreciation 2010, appreciation 2011, followed by sta-
bility in 2012. Between 2013-2014 the exchange rate exhibits stability with some
appreciation. For MZN/GBP exchange rate we observe three periods, depreciation
in 2010, appreciation in 2011 and depreciation with relative appreciation between
2012-2014.
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Figure 4.1: Behavior of CZA prices, MZN/ZAR and MZN/GBP exchange rates,
period 2010 - 2014

As usual the series are not stationary, therefore, we transform them into the
corresponding returns using the formula rit = [ln(yit) − ln(yit−1)] × 100. Then

2http://finance.yahoo.com/q/hp?=CZA.L.
3http://www.oanda.com/currency/historical-rates.
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the returns, although stationary where confirmed by Augmented Dickey-Fuller test
discussed in section 2.1, exhibit some persistence and the residuals from the mean
process show deviations from normality and the presence of ARCH effects. After
fitting a VAR(1) model and obtaining the corresponding residuals, the results from
the multivariate check are presented in Table 4.1.

Table 4.1: Multivariate tests for residuals of the returns, p-value in brackets

Statistic 2010-2014 2010 2011 2012 2013-2014
MLB Q(12) 137.37

[0.0000]
159.62
[0.0000]

192.83
[0.0000]

215.77
[0.0000]

339.37
[0.0000]

MJB Stat 2238.17
[0.0000]

604.64
[0.0000]

153.56
[0.0000]

055.91
[0.0000]

273.83
[0.0000]

MLM-ARCH 476.77
[0.0000]

181.73
[0.1376]∗

338.23
[0.0000]

192.61
[0.0510]∗

303.36
[0.0000]

∗ The test statistics show ARCH effects for 14% and 6%. However, results
equation-by-equation indicate that some ARCH effects may be present.

In particular, the multivariate Ljung - Box test for autocorrelation rejected the
null hypothesis of no autocorrelation up to 12 lags, for all sub-samples. However,
on an equation-by-equation basis the autocorrelation functions are well-behaved,
i.e., largely inside the 95 per cent bands. So, for the sake of a parsimonious model,
a VAR(1) is employed. The MJB statistic showed that the joint residuals are
not multivariate normal. Finally, the test for ARCH effects failed to reject the
null hypothesis for 2010 and 2012, but rejected for the whole sample and for the
remaining periods. That is, the joint residuals have ARCH effects, so we can setup
the MGARCH models.

4.5.2 Results for conditional correlation MGARCH models

Our multivariate GARCH modelling is concentrated on correlation, possibly varying,
among the above series. Namely, the models estimated are the CCC, DCC and
VCC, using VAR(1)-MGARCH(1,1). The conditional distribution of the error term
was assumed to be multivariate normal. Starting with GARCH(1,1) properties,
all αi and βj coefficients are positive and in most pairs β > α as it was expected
for GARCH model. In terms of significance only four of 27 parameters are not
statistically significant at 5%.

Regarding to the GARCH model properties, we can see from Table 4.2, all
models has α close to 0.05, indicating that the markets are relatively stable. The
persistence of exchange rates are higher than that of coal price in DCC and VCC
models. But when using CCC levels of persistence are much closer, which indicate
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that the changes in the exchange rate are related to the changes of time. In other
side comparing the series, the coal prices have lower persistence in volatility.

In general, the univariate GARCH(1,1) exhibits high persistence, keeping α+β <
1. In Table 4.2, as an example, we present estimates for CCC, DCC and VCC models,
for the period 2010-2014.

Table 4.2: Estimates for DCC, VCC and CCC - GARCH(1,1) models, for period
2010-2014, p-value in parenthesis

Return from ω α β α+ β

DCC model
CZA 3.9005 (0.0020) 0.0601 (0.0030) 0.7016 (0.0000) 0.7617

MZN/ZAR 0.0400 (0.0040) 0.0549 (0.0000) 0.9146 (0.0000) 0.9695
MZN/GBP 0.0453 (0.0000) 0.0568 (0.0000) 0.9010 (0.0000) 0.9578

VCC model
CZA 3.6944 (0.0040) 0.0536 (0.0040) 0.7175 (0.0080) 0.7711

MZN/ZAR 0.0284 (0.0050) 0.0410 (0.0000) 0.9365 (0.0080) 0.9775
MZN/GBP 0.0381 (0.0000) 0.0430 (0.0000) 0.9187 (0.0000) 0.9617

CCC model
CZA 3.6995 (0.0040) 0.0525 (0.0050) 0.9185 (0.0000) 0.7710

MZN/ZAR 0.0313 (0.0090) 0.0342 (0.0000) 0.9405 (0.0000) 0.9745
MZN/GBP 0.0456 (0.0010) 0.0380 (0.0000) 0.9153 (0.0000) 0.9533

The estimated conditional variance, shown in Figure 4.2, assumes a time depen-
dent conditional correlation matrix (DCC) besides the case where it is time invariant
(CCC). From the depicted behavior we can observe that the volatility of Coal prices
is different from that of exchange rates.

Note that the differences of estimated conditional variance are in the behavior and
the scale selected, in the two models. Still in Figure 4.2, exchange rates volatility are
similar, in both series. And it can be observed that the behavior of the conditional
variance estimated for the CCC model is similar for all three variables considered.
This similarity can be justified by the assumption that the correlation between the
residuals is time invariant imposed.

To verify the eventual relationship between commodity prices and the exchange
rates, we use the estimated conditional covariance between Coal of Africa prices
and MZN/GBP exchange rate using both the time invariant CCC model and the
VCC model with a variable matrix of conditional correlation. The Figure 4.3, illus-
trates the fluctuations in co-movement of volatility for the periods 2010, 2011 and
2012, corresponding to depreciation, appreciation and stability respectively of the
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Figure 4.2: DCC and CCC conditional variance for full sample and the year 2011

MZN/ZAR exchange rates. Taking as an example the VCC model over these three
periods, it is observed that the conditional covariance behavior changes from one
sub-period to another, in addition to being associated with different magnitude of
scale.
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Figure 4.3: VCC and CCC conditional covariance between CZA and MZN/GBP
exchange rate

For VCC model, in the depreciation period, the conditional covariance is neg-
ative, for appreciation and stability periods it is around zero with some positive
observations. However, for CCC the estimated conditional covariance for deprecia-
tion and appreciation period is negative, and different from that of stability period
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which is positive. This leads us to say that the link between commodity prices and
exchange rates is not always the same, particularly across different marked exchange
rate behavior.

Considering the conditional covariance from DCC model, the Figure 4.4 show
that, the graphics for pairs between CZA prices and exchange rates are similar
with oscillation around zero, while the estimated covariance between exchange rates
display different behavior with only positive values in sample where the highest peaks
occur in the first two quarters of 2013 followed by values less then 3 for subsequent
quarters.
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Figure 4.4: DCC conditional covariance between CZA, MZN/ZAR and MZN/GBP
series, 2013-2014

Regarding the adjustment parameter, they are positive in all cases, statistically
significant at 5%, and the constraint λ1 + λ2 < 1 is satisfied. The Wald test for
the null hypothesis of λ1 = λ2 = 0 in the DCC and VCC leads to reject the null
hypothesis. That is, the parameters are jointly significant, therefore, the DCC and
VCC models does not reduce to CCC model. Hence, the assumption of time-invariant
conditional correlation assumed in the CCC model is too restrictive for the data.

In Figure 4.5, as an illustration of correlations behavior, the case of DCC model
over 2010-2014 is presented.
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Figure 4.5: DCC conditional correlation between CZA, MZN/ZAR and MZN/GBP
series, 2010-2014

The conditional correlation between CZA prices and the MZN/ZAR exchange
rate is negative, weak and most of the time not significant at 5%. For CZA and
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MZN/GBP exchange rate is negative with most cases non-significant, except for the
period 2013-2014 where the correlation is positive, as shown in Table 4.3. Differently,
the correlation between exchange rates is positive, strong and significant at any level
of significance.

Table 4.3: Pairwise conditional correlation from DCC, VCC and CCC - GARCH(1,1)
models

Period Model (CZA, MZAR) (CZA, MGBP) (MZAR, MGBP)
2010-2014 DCC -0.0805 (0.0600) -0.0023 (0.9560) 0.8691 (0.0000)
Full sample VCC -0.0954 (0.0040) -0.0030 (0.9290) 0.8815 (0.0000)

CCC -0.0920 (0.0010) -0.0029 (0.9160) 0.8566 (0.0000)
2010 DCC -0.2070 (0.0230) -0.1517 (0.0350) 0.9059 (0.0000)

Appreciation VCC -0.2378 (0.0010) -0.1446 (0.0530) 0.8947 (0.0000)
CCC -0.1994 (0.0010) -0.1109 (0.0074) 0.8827 (0.0000)

2011 DCC -0.1308 (0.0810) -0.0203 (0.7900) 0.8737 (0.0000)
Depreciation VCC -0.1413 (0.0560) -0.0254 (0.7360) 0.8875 (0.0000)

CCC -0.1451 (0.0200) -0.0400 (0.5310) 0.8805 (0.0000)
2012 DCC -0.1376 (0.0610) 0.0226 (0.7630) 0.8827 (0.0000)

Stability VCC -0.1358 (0.0510) -0.0010 (0.9920) 0.8956 (0.0000)
CCC -0.1352 (0.0290) 0.0041 (0.9480) 0.8883 (0.0000)

2013-2014 DCC -0.0055 (0.9400) 0.0159 (0.8240) 0.8685 (0.0000)
Stability - VCC -0.0128 (0.8280) 0.0298 (0.6130) 0.8834 (0.0000)
Appreciation CCC -0.0110 (0.8040) 0.0286 (0.5150) 0.8493 (0.0000)

p-value in parenthesis, MZAR=MZN/ZAR and MGBP=MZN/GBP exchange rate.

4.5.3 Forecast evaluation

For an assessment of model fit, applied to the DCC-GARCH (1,1) model, this
subsection reports in-sample forecast performance computing mean absolute error
for conditional variance and covariance, shown in Table 4.4. A comparison of the
MAE points out that DCC model performs better in the forecast of conditional
variance for the MZN/GBP exchange rate in all periods except in 2012, the period of
stability. The best performance for conditional covariance was that of the covariance
between CZA prices and MZN/GBP exchange rate.
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Table 4.4: DCC mean absolute error for conditional variance and covariance predic-
tions

Conditional variance 2010-2014 2010 2011 2012 2013-2014
var(CZA) 19.3620 42.4487 26.5154 31.9470 33.0938
var(MZN/ZAR) 1.5722 2.8948 4.6514 2.3620 2.6875
var(MZN/GBP) 1.3414 2.5558 2.4554 2.5046 2.4960
Cond. covariance 2010-2014 2010 2011 2012 2013-2014
cov(CZA,MZN/ZAR) 0.3299 1.3295 0.8879 0.9056 1.0705
cov(CZA,MZN/GBP) 0.0187 0.9170 0.4984 0.6061 0.9352
cov(MZAR,MGBP)* 1.2153 2.3998 3.4487 2.3505 2.2685

* MZAR, MGBP indicate MAN/ZAR and MZN/GBP exchange rate

4.5.4 Conclusions

We investigate the co-movement of three financial time series, the Coal of South Africa
prices, MZN/ZAR and MZN/GBP exchange rates, using the CCC, DCC and VCC
models. The results indicate that: (i) the individual series of returns are stationary
but show some persistence, do not follow the Normal distribution and exhibit ARCH
effects; (ii) the behavior of variance and covariance varies across different marked
periods, depending on the type of systematic behavior of the exchange rate; (iii)
there is a negative correlation between CZA prices and exchange rates, while the
correlation between exchange rates is positive and significant at 5% level.

Altogether, the study concludes for the existence of volatility links among com-
modity prices and exchange rates, possibly with time-varying correlations, and,
interestingly, depending on the specific systematic behavior of exchange rates.

98



www.manaraa.com

C
h

a
p

t
e

r 5
Normality of log-returns

5.1 Introduction

Checking the normality is one of the assumptions required in many studies using
parametric statistical methods. In this line of ideas, the normality of the log-return
of stock prices is often assumed by the market players in order to use some useful
results. The simplicity of the Black-Scholes formula (see Black and Scholes [13]) for
pricing European options is one of the reasons why the geometric Brownian motion
is one of the most popular processes used in mathematical finance. However, for this
process is assumed that the log-return of the prices are normal distributed random
variables, a condition that many times seems to be not true in practice.

In this chapter, we test the normality assumption for different formulations of
price returns, namely intra-day and inter-day log-returns, for a large set of companies
data and using five alternative goodness-of-fit tests. We implement the Pearson’s Chi-
Square (PCS), Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Shapiro-Wilks
(SW) and Jarque-Bera (JB) tests for normality and we consider the log-returns of
consecutive closing prices, consecutive closing and opening prices and also opening
and closing prices from the same day. We also repeat the tests when we remove
some of the higher and lower log-returns from the samples.

Importantly, when analysing cointegration, particularly using Johansen approach
in Johansen [63, 64], normality is also required. Furthermore, all the above holds for
the various financial time series, namely for exchange rate analysis. The normality
tests presented in the application of this chapter are described in Mulenga et al [88].

The chapter is organized as follows: in section 5.2 we introduce the tests for
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the less familiarized readers; in section 5.3 we present and discuss the results of the
application of the tests and in subsection 5.3.3 we conclude with some remarks.

5.2 Statistical tests for normality
We apply several goodness-of-fit tests to investigate the normality of the log-returns of
stock prices. We choose to use several goodness-of-fit tests from different kinds since
all the tests have some advantages and disadvantages. From the “area tests"kind we
choose to implement the Pearson’s Chi-square test that compares the real number of
observations with the expected number of observations in each class, we can say that
compares the data histogram with the histogram of the distribution being tested.
Both the Kolmogorov-Smirnov and the Anderson-Darling tests uses the cumulative
distribution function and the empirical distribution function and are based in a
measure of the discrepancy between those two functions and therefore are considered
in the class of “distance tests". Some advantages of this kind of tests is that they
are easy to compute, they are more powerful than the Chi-Square test, over a wide
range of alternatives, and they provide consistent tests.

The Shapiro-Wilks (or Shapiro-Francia) is a test based in the regression between
the order statistics of the sample and the mean value of the order statistics from the
tested distribution. This test for normality has higher power than the previous ones.
Finally, the Jarque-Bera test, is based in the Lagrange multiplier test and computes
the sample skewness and kurtosis, to tests if they match with the ones from a normal
distribution. For a discussion regarding the power comparison of the different tests
we can cite, among others, Razali and Yap [101] and Yap and Sim [119].

5.2.1 Pearson’s Chi-Square test

The Pearson’s Chi-Square test (first introduced in Pearson [97]), compares the
frequency observed in a sample with a particular theoretical distribution, that is,
for a number k of classes C1, ...,Ck, mutually exclusive and of total probability, the
number of observations Oi in class i, i= 1, ...,k is compared with the expect number
of observations Ei, in that same class provided the null hypothesis is true.

The Pearsons’s chi-square statistic is,

χ2 =
k∑
i=1

(Oi−Ei)2

Ei
(5.1)

having a χ2 (Chi-square) distribution with k− p− 1 degrees of freedom, where k
is the number of classes and p is the number of estimated parameters. The null
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hypothesis, of the sample be from a particular distribution, is rejected if the observed
value of the statistics is greater than the critical value obtained from the Chi-square
distribution.

5.2.2 Kolmogorov-Smirnov’s test

The Kolmogorov-Smirnov statistic (introduced in Kolmogorov [70]) allows us to test
if a sample of observations is from some completely specified continuous distribution,
F0, by means of comparing a particular kind of distance between the empirical and
the theoretical cumulative distribution function.

The test statistic, Dn, is given by,

Dn = max
1≤i≤n

[max{F0(Xi:n)−Fn(Xi−1:n),Fn(Xi:n)−F0(Xi:n)}] (5.2)

where F0 is the distribution function of the theoretical distribution being tested
and Fn is the empirical distribution function. Critical values for this statistic can
be found in Birnbaum [11] or Massey [81], however, when some parameters of the
distribution, considered in the null hypothesis, have to be estimated from the sample,
then the commonly tabulated critical points can led to conservative results. In this
situation, Lilliefors’s critical values (that can be found in Lilliefors [74]) should be
used.

5.2.3 Anderson-Darling’s test

The Anderson-Darling test is the third goodness-of-fitness test that we use to test
for normality. More information about this test can be found in Anderson and
Darling [2, 3], but again, it compares the observed cumulative distribution function
to the expected cumulative distribution function as the Kolmogorov-Smirnov test.

The statistic A2
n, for the Anderson-Darling’s test, is defined by,

A2
n =−n− 1

n

n∑
i=1

(2i− 1) [ln(F0(Xi:n)) + ln(1−F0(Xn−i+1:n))] , (5.3)

where, as before, F0 denotes the distribution function assumed in the null hypothesis.
In Anderson and Darling [3], asymptotic critical points for significance levels of

1%,5% and 10% are presented and more extensive tables of critical points obtained
from Monte Carlo simulation can be found in Lewis [73]. When the distribution to
be tested is normal or exponential and the distribution parameters are unknown and
needed to be estimated, we can find the critical values for the Anderson-Darling’s
statistics in Stephens [112, 113].
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5.2.4 Shapiro - Wilk’s test

In the Shapiro-Wilk’s test, presented in the Shapiro and Wilks [107], the test statistic
Wn was constructed through the regression of the order sample statistics against the
expected normal order statistics and is a suitable test when the location and scale
parameters are unknown.

The test statistic, Wn, is defined by,

Wn = (∑n
i=1aiXi:n)2∑n

i=1(Xi:n− X̄)2 (5.4)

where the coefficients ai = aT are given by

aT = (a1,a2, ...,an) = mTV−1(
mTV−1V−1m

) 1
2

(5.5)

with
mT = (m1,m2, ...,mn), V = [vij ]n×n (5.6)

represents the vector of expected values of the standard normal order statistics and
the corresponding covariance matrix, respectively.

The values for a and the percentage points of Wn are known up to sample sizes
of n= 50 and can be found in the original paper. For samples of larger dimension an
extension of the Shapiro - Wilk’s test can be found in Royston [102] or in alternative,
the Shapiro-Francia statistic (with simpler coefficients and about the same overall
power) introduced in Shapiro and Francia [106] can be used.

Percentage points for the Shapiro-Francia statistic can be found in Shapiro and
Francia [106] for sample sizes n= 35,50,51(2)99 and for samples of larger dimension
in Royston [103].

Small values of the statistic are the significant ones, i.e. indicate non-normality.

5.2.5 Jarque-Bera’s test

The last test that we implement is the Jarque-Bera’s test, described in Jarque and
Bera [62]. The Lagrange multipliers method was used to derived an asymptotic
efficient test where the skewness and kurtosis of the sample data are compared to
the ones of the normal distribution.

The test statistic, JBn, is defined by,

JBn = n

 ŝkew2

6 + (k̂urt− 3)2

24

 (5.7)
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where ŝkew and k̂urt are the sample estimators of the skewness and kurtosis, as
presented before in chapter 2. The large values of the statistic are the significant ones
and should be compared with the right tail critical values of a Chi-square distribution
with 2 degrees of freedom.

5.3 Application of normality tests

5.3.1 Data description

The data considered in this study, are daily prices from companies belonging to the
Nasdaq Composite Index and are obtained from the yahoo finance site1. For instance,
the data from the Microsoft Corporation company (MSFT) can be obtained through
the link 2.

All the testing and analysis is performed using the Wolfram Mathematica 10.2
software, see Mathematica [118].

We selected the daily prices from years 2005 to 2016 and in each year we only
consider the companies that have more than 220 transactions days and transaction
volume of at least 50000 units per day, the total number of those companies is
represent by K (in each year) and from those we take count of how many have their
prices failing the normality assumption.

5.3.2 Results and discussion

In the following, let SOi and SCi be the stock opening and closing prices at day i,
respectively. Using the log-returns of closing daily prices, namely,

log
(
SCi+1
SCi

)
(5.8)

and all the normality tests for a level of significance of 1%, we get the results presented
in Table 5.1.

We can observe that we have normality rejection percentages, ranging from 44%
to near 65% with the Pearson’s Chi-square test (the one with the smaller rejection
rates) to more than 90% if we consider the Jarque-Bera’s test (the one with the
higher rejection rates). Notice that as expected, the year of 2008 (the year of the
financial crisis) is the one with higher normality rejection rate and this for all tests
being considered.

1https://finance.yahoo.com/.
2https://finance.yahoo.com/quote/MSFT/history?period1=1104537600period2=1483142400

interval=1dfilter=historyfrequency=1d.
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Table 5.1: Total (and percentage) of samples rejected by each test for normality at
1% level of significance (log(SCi+1/SCi))

Year K PCS (%) KS (%) AD (%) SW (%) JB (%)

2005 901 494(54.83) 658(73.03) 763(84.68) 800(88.80) 814(90.34)
2006 1018 546(53.63) 747(73.34) 850(83.50) 909(89.29) 925(90.86)
2007 1161 691(59.52) 923(79.50) 1050(90.44) 1085(93.45) 1095(94.32)
2008 1180 765(64.83) 1010(85.60) 1114(94.41) 1142(96.78) 1135(96.19)
2009 1200 642(53.50) 934(77.83) 1090(90.83) 1105(92.08) 1104(92.00)
2010 1260 557(44.21) 812(64.44) 1000(79.37) 1028(81.59) 1047(83.10)
2011 1374 686(49.93) 1007(73.29) 1208(87.92) 1267(92.21) 1287(93.67)
2012 1399 723(51.68) 974(69.62) 1129(80.70) 1198(85.63) 1218(87.06)
2013 1586 989(62.36) 1253(79.00) 1400(88.27) 1475(93.00) 1486(93.69)
2014 1441 784(54.41) 1072(74.39) 1224(84.94) 1291(89.60) 1320(91.60)
2015 1433 775(54.08) 1042(72.71) 1203(83.95) 1275(88.97) 1301(90.79)
2016 1443 902(62.51) 1182(81.91) 1318(91.34) 1361(94.32) 1379(95.56)

The year of 2010 is the one with smaller rejection rate and also for all the tests,
from 2008 to 2010 we have a decreasing of the normality rejection rate from near
65% to a little more than 44% for the Pearson’s Chi-square test and from near 96%
to near 83% for the Jarque-Bera’s test. For the Kolmogorov-Smirnov’s, Anderson-
Darling’s or Shapiro-Wilk’s tests we have decreasing rejection rates from 85.6% to
64.44%, 94.41% to 79.37% and 96.78% to 81.59%, respectively.

Next, we consider closing and opening prices from the same day and the corre-
sponding log-returns,

log
(
SCi
SOi

)
(5.9)

For the same level of significance of 1%, as previously, we get the results presented
in Table 5.2.

The main difference from Table 5.1 to Table 5.2 is the overall decreasing of the
normality rejection rate in all years and for all considered tests. That decreasing
is more notorious in the years of 2005-2006 (with changes as higher as 30% for the
Pearson’s Chi-square test) and less obvious in the crisis year of 2008 (decreasing at
most 10%). Again, the year of 2008 (followed by the 2016 year) is the one with higher
percentage of companies with log-returns of stock prices far away from normality
and, as before, the year of 2010 is the one with the smaller percentages of normality
rejection, decreasing from 54.41% in 2008 to 23.73% for the Pearson’s Chi-square
test in 2010 and from 92.88% to 71% for the Jarque-Bera’s test, the tests with
smaller/higher rejection rates, respectively.

Finally, we select the closing prices at day i and opening prices at day i+ 1 and
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Table 5.2: Total (and percentage) of samples rejected by each test for normality at
1% level of significance (log(SCi/SOi))

Year K PCS (%) KS(%) AD (%) SW (%) JB(%)

2005 901 218(24.20) 411(45.62) 551(61.15) 635(70.48) 672(74.58)
2006 1018 256(25.15) 460(45.19) 607(59.63) 697(68.47) 739(72.60)
2007 1161 449(38.67) 745(64.17) 924(79.59) 980(84.41) 996(85.79)
2008 1180 642(54.41) 909(77.03) 1058(89.66) 1095(92.80) 1096(92.88)
2009 1200 504(42.00) 808(67.33) 980(81.67) 1023(85.25) 1028(85.67)
2010 1260 299(23.73) 530(42.06) 727(57.70) 845(67.06) 895(71.03)
2011 1374 471(34.28) 800(58.22) 1034(75.25) 1141(83.04) 1179(85.81)
2012 1399 457(32.67) 752(53.75) 937(67.00) 1066(76.20) 1100(78.63)
2013 1586 664(41.87) 1021(64.38) 1197(75.47) 1314(82.85) 1365(86.07)
2014 1441 510(35.39) 834(57.88) 1046(72.59) 1156(80.22) 1187(82.37)
2015 1433 563(39.29) 902(62.94) 1123(78.37) 1220(85.14) 1255(87.58)
2016 1443 643(44.56) 960(66.53) 1180(81.77) 1251(86.69) 1288(89.26)

the corresponding log-returns,

log
(
SOi+1
SCi

)
(5.10)

Again the five normality tests are executed for the same 1% significance level and
the results can be found in Table 5.3.

Table 5.3: Total (and percentage) of samples rejected by each test for normality at
1% level of significance (log(SOi+1/SCi))

Year K PCS(%) KS (%) AD (%) SW (%) JB (%)

2005 901 820(91.01) 838(93.01) 851(94.45) 869(96.45) 865(96.00)
2006 1018 955(93.81) 964(94.70) 982(96.46) 999(98.13) 1000(98.23)
2007 1161 1098(94.57) 1132(97.50) 1149(98.97) 1153(99.31) 1156(99.57)
2008 1180 1147(97.20) 1172(99.32) 1179(99.92) 1179(99.92) 1178(99.83)
2009 1200 1012(84.33) 1116(93.00) 1164(97.00) 1168(97.33) 1168(97.33)
2010 1260 1027(81.51) 1121(88.97) 1190(94.44) 1229(97.54) 1236(98.10)
2011 1374 1248(90.83) 1344(97.82) 1370(99.71) 1368(99.56) 1367(99.49)
2012 1399 1243(88.85) 1329(95.00) 1360(97.21) 1362(97.36) 1370(97.93)
2013 1586 1459(91.99) 1526(96.22) 1549(97.67) 1556(98.11) 1553(97.92)
2014 1441 1340(92.99) 1382(95.91) 1408(97.71) 1422(98.68) 1423(98.75)
2015 1433 1342(93.65) 1396(97.42) 1418(98.95) 1422(99.23) 1421(99.16)
2016 1443 1393(96.54) 1425(98.75) 1438(99.65) 1442(99.93) 1441(99.86)

From the observation of Table 5.3 is obvious that for this data the results are of
almost complete rejection of the normality assumption. In fact, even for the most
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favorable test in not rejecting the normality assumption (the Pearson’s Chi-square
test), we have more than 80% of rejection rate, in the most favorable year of 2010.

Although being test depending, the overall result is that the normality assumption
is largely rejected for all tests in most years but in higher percentages when we
consider prices from one trading day to another (inter-day prices) as we observe in
Tables 5.1 or 5.3 and lower percentages when we consider the opening and closing
prices from the same day (intra-day prices, as in Table 5.2). This emphasises the
idea that the non-normality of the log-returns of the stock prices seems to be more
dependent from what happens when the markets are closed (see Table 5.3).

Since the rejection rates are higher when we apply the Jarque-Bera’s test and
because this particular test is more sensitive to extremal data it seems reasonable
that some of the reason for the normality assumption failure is due to that specific
observations. In fact, we observe that if we remove some of the more extreme
observations from the log-returns data and we perform the same normality tests we
get very different results.

Repeating the normality tests for trimmed samples, with the higher five and
lower five log-returns removed, we get the results presented in Tables 5.4, 5.5 and 5.6.
Notice that, when we remove 10 observations from the sample with approximately
250 entries, we are removing about 4% of the observations.

Table 5.4: Total (and percentage) of samples rejected by each test for normality at
1% level of significance, when the data is trimmed (log(SCi+1/SCi))

Year K PCS (%) KS (%) AD (%) SW (%) JB (%)

2005 901 113(12.54) 184(20.42) 187(20.75) 194(21.53) 86(09.54)
2006 1018 110(10.81) 198(19.45) 218(21.41) 216(21.22) 85(08.35)
2007 1161 152(13.09) 244(21.02) 291(25.06) 265(22.83) 120(10.34)
2008 1180 225(19.07) 356(30.17) 472(40.00) 411(34.83) 238(20.17)
2009 1200 196(16.33) 310(25.83) 369(30.75) 311(25.92) 144(12.00)
2010 1260 161(12.78) 218(17.30) 221(17.54) 176(13.97) 72(05.71)
2011 1374 172(12.52) 251(18.27) 289(21.03) 218(15.87) 87(06.33)
2012 1399 193(13.80) 270(19.30) 256(18.30) 243(17.37) 122(08.72)
2013 1586 310(19.55) 408(25.73) 419(26.42) 408(25.73) 224(14.12)
2014 1441 199(13.81) 276(19.15) 292(20.26) 275(19.08) 141(09.78)
2015 1433 189(13.19) 258(18.00) 245(17.10) 243(16.96 120(08.37)
2016 1443 293(20.30) 348(24.12) 349(24.19) 311(21.55) 167(11.57)

Again, we can observe that the normality assumption is more times rejected when
we consider inter-day prices, just as before (see Tables 5.4 and 5.6). However, in this
new framework, the normality assumption is not rejected so many times as before.
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Table 5.5: Total (and percentage) of samples rejected by each test for normality at
1% level of significance, when the data is trimmed (log(SCi/SOi))

Year K PCS (%) KS(%) AD (%) SW(%) JB (%)

2005 901 79(8.77) 113(12.54) 124(13.76) 132(14.65) 37(4.11)
2006 1018 91(8.94) 134(13.16) 128(12.57) 131(12.87) 49(4.81)
2007 1161 124(10.68) 203(17.48) 235(20.24) 199(17.14) 88(7.58)
2008 1180 178(15.08) 316(26.78) 423(35.85) 373(31.61) 213(18.05)
2009 1200 188(15.67) 284(23.67) 308(25.67) 261(21.75) 102(8.50)
2010 1260 129(10.24) 147(11.67) 132(10.48) 124(9.84) 37(2.94)
2011 1374 150(10.92) 209(15.21) 214(15.58) 180(13.10) 62(4.51)
2012 1399 179(12.79) 225(16.08) 192(13.72) 187(13.37) 62(4.43)
2013 1586 253(15.95) 330(20.81) 299(18.85) 288(18.16) 126(7.94)
2014 1441 165(11.45) 222(15.41) 213(14.78) 196(13.60) 89(6.18)
2015 1433 179(12.49) 243(16.96) 219(15.28) 208(14.52) 69(4.82)
2016 1443 252(17.46) 290(20.10) 279(19.33) 245(16.98) 100(6.93)

Table 5.6: Total (and percentage) of samples rejected by each test for normality at
1% level of significance, when the data is trimmed (log(SOi+1/SCi))

Year K PCS(%) KS(%) AD(%) SW(%) JB(%)

2005 901 500(55.49) 493(54.72) 442(49.06) 468(51.94) 276(30.63)
2006 1018 555(54.52) 549(53.93) 515(50.59) 535(52.55) 341(33.50)
2007 1161 555(47.80) 678(58.40) 694(59.78) 656(56.50) 516(44.44)
2008 1180 592(50.17) 784(66.44) 912(77.29) 831(70.42) 611(51.78)
2009 1200 477(39.75) 621(51.75) 608(50.67) 567(47.25) 336(28.00)
2010 1260 499(39.60) 522(41.43) 425(33.73) 392(31.11) 279(22.14)
2011 1374 594(43.23) 795(57.86) 931(67.76) 824(59.97) 561(40.83)
2012 1399 618(44.17) 686(49.04) 563(40.24) 524(37.46) 362(25.88)
2013 1586 806(50.82) 881(55.55) 780(49.18) 734(46.28) 487(30.71)
2014 1441 627(43.51) 699(48.51) 682(47.33) 678(47.05) 561(38.93)
2015 1433 596(41.59) 679(47.38) 665(46.41) 676(47.17) 521(36.36)
2016 1443 734(50.87) 861(59.67) 864(59.88) 885(61.33) 708(49.06)

In fact, the percentage of normality rejections decreases substantially, in the case of
Shapiro-Wilk’s and Jarque-Bera’s tests, from values above the 80% to values below
25% for the log(SCi+1/SCi) data (Table 5.1 vs Table 5.4) and from values above 90%
to values ranging 40%-50% for the log(SOi+1/SCi) data (Table 5.3 vs Table 5.6).
The same reduction in the rejection rate is also observed for the remaining tests and
for all the years.

If we compare the normality rejection percentage for intra-day prices, that is,
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(log(SCi/SOi)), the decreasing is from more than 75% to less than 20% (Shapiro-
Wilk’s, Tables 5.2 and 5.5). The reduction is also evident for the other tests and, in
particular, notice that the Jarque-Bera’s test in the previous framework gives the
higher rates of rejection but for the trimmed data with the more extreme observations
removed, is the test with lower rates of rejection. This outcome was somewhat
expected because as already said, the more extreme observations will condition the
skewness and the kurtosis of the distribution, meaning that some tests supposed to
be more affected by those parameters are indeed strongly affected.

In this framework is also obvious that the departure from normality is stronger
and seems more dependent to what happens during the closing periods of the financial
markets, see Tables 5.4 and 5.6. Even in this set up of trimmed data, we observe
that the 2008 year (the year of the financial crisis) and for almost all tests, is again
the year with the higher rates of normality rejection, as expected.

5.3.3 Final remarks

The results of the data testing allows us to discuss two questions: The normality
assumption of the log-returns of the stock prices is still a reasonable assumption?
There are differences in the normality assumption of the log-returns in intra-day and
inter-day prices? Regarding the first question we can observe that when we remove
some of the more extreme observations the normality assumption is reasonable for
most of the companies stock prices. That is, some trimming ensures normality,
validating the applications of several models, of pricing and multivariate time series,
including volatility analysis.

On the other hand, it seems reasonable to say that what affects more strongly the
non-normality of the logarithm of returns for the stock prices are the “things"that
happens when the markets are closed. The focus and results in the application
are also relevant, with due differences, for all kinds of financial times series, e.g.,
bonds and currencies, validating pricing and forecasting models, including volatility
analysis.
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Conclusions and Recommendations

6.1 Conclusions

Mozambique like any other country has the National Institute of Statistics, which in
collaboration with other institutions, have the task of collecting data, process and
disseminate the information for use by either the government or other organizations.
Collecting data, processing and providing appropriate information to users involves
knowing the sampling techniques, the most appropriate models as well as a solid
knowledge of statistical data analysis as a whole.

Considering the need for knowledge of procedures, data analysis and processing
techniques in order to provide accurate information to users, especially information
for macroeconomic indicators, we propose modelling and analysis of univariate and
multivariate volatility applied to macroeconomic variables of Mozambique such as
Exchange rate, real GDP and GDP deflator or related to the country such as prices
of Coal of Africa and South Africa real GDP.

In order to understand and disseminate information related to the behavior of
macroeconomic time series, we identify three tasks (i) investigate the behavior of
exchange rate, (ii) analyse of the dynamic interplay of macroeconomic time series,
and (iii) analyse the relationship between co-volatilities of returns. These tasks
correspond to the same number of problems, which we solved by modelling the series
using different specifications such as ARCH, GARCH, VAR, SVEC and MGARCH
models presented in previews chapters to analyse the dynamics between the series
or their volatilities.
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In the study of the exchange rate behavior, we take Mozambique daily New Met-
ical exchange rate against South Africa Rand, over 2010-2014. Out of modelling full
sample, we identified four sub-periods with distinct currency behavior (Figure 2.1),
– 2010 - depreciation, 2011 - appreciation, 2012 - stability and 2013-2014 stability
with appreciation – and apply four popular asymmetric GARCH models described
in section 2.3. The validation of models is done with sign and size bias tests, along
with the plots of news impact curves.

The dynamics between variables was made, verifying the role of Mozambique
real GDP, GDP deflator and external shocks represented by South Africa real GDP.
Next, we use the SVEC model 3.38 to take into account the vector error correction
and identify contemporaneous and long-run effects of shocks, where for identification
we assume that prices are not affected by contemporaneous supply shocks nor by
external shocks. For long-run we consider that only an aggregate supply shock has
permanent effects.

The analysis of the relationship and co-volatilities between variables was per-
formed taking the prices of Coal of South Africa, the Mozambique New Metical
against South Africa Rand, and Mozambique New Metical against Great Britain
Pound exchange rates, were used multivariate GARCH models in the class of condi-
tional correlation, as discussed in section 4.3.

Because the assumption of normality of returns is required in many studies, we
verify the normality of log-returns of stock prices using five statistical tests described
in section 5.2.

Summarizing, from the study, one can present the following conclusions:
(a) For MZN/ZAR exchange rate series, data description show that the series

exhibit different behavior in the study period and in periods of appreciation with
or without some stability, there is no asymmetry. Results from the full heteroge-
neous sample masks to some extent, the existence of size and sign effects of news.
Comparing estimates from different behavior suggests that in depreciation times
the significance of asymmetry and importance of size effects are stronger, than in
the stability periods where the exchange rate risk is lower, in addition, the positive
news have a higher effect on volatility, than bad news, when the currency trend is
appreciation or stability.

(b) Results from tri-variable analysis indicates stationary series after first differ-
ences, and the Johansen test for cointegration identified two cointegrating vectors
where the first equation is composite by Mozambique real GDP and South African
real GDP, the second pair is composite by Mozambique real GDP deflator and South
Africa real GDP (Table 3.2 and 3.3). Regarding impulse response functions the
aggregate supply shocks have a positive and permanent impact on Mozambique real
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GDP, while for Mozambique real GDP deflator and South Africa real GDP, the im-
pact of aggregate supply shocks is negative and transitory, which confirm the existing
economic theory in the literature (Figure 3.3). With respect to forecasting error
variance decomposition, we notice that the long-run development of both Mozam-
bique real GDP and real GDP deflator are dominated by its own supply and demand
shocks respectively. However, for GDP deflator this predominance decreases over
time giving rise to the influence of supply shocks. Regarding the variance of South
Africa real GDP, it is mainly attributed to demand and supply shocks (Table 3.5).

c) The results from multivariate GARCH models indicate that the series exhibit
ARCH effects and the behavior of variance and covariance vary across different
market periods, depending on the behavior of the exchange rate. The univariate
GARCH(1,1) parameter estimates indicates the existence of hight persistence, since
α+ β ≈ 0.9, (Table 4.2). Regarding relationship, the results of this sample indicate
a positive correlation between exchange rates, while the relations between exchange
rates and Coal prices are negative (Table 4.3). Also from the sample, the Wald test
indicate that DCC and VCC models do not reduce to CCC model, suggesting the
assumption of time-invariant too restrictive for the data analysed.

d) The study of normality of stock prices shows that most tests reject the hy-
pothesis of normality of log-returns of stock prices. However, removing some of the
extreme observations the normality assumption is reasonable for most of the stocks
prices.

Among several findings found throughout the study, the following can be under-
lined:

• In the policy design, memory and nonlinearity matter and the trend behavior
of the exchange rate is key for assessing the effects of news on exchange rate
risk, because not always good news is good.

• The Mozambique real GDP plays an important role in both cointegration
relations, in the analysis of impulse response function as well as the forecast
error variance decomposition.

• The volatility links between commodity prices and exchange rates is not always
the some, particularly across different marked exchange rate behavior.

• The rejection rate of the normality assumption of the log-returns of stock prices
increases when the stock price of returns are based on consecutive days and
when some extreme observations are considered.
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The analyse of exchange rate behavior, bring new contributions and reinforce the
existing literature, that the model choice is key for the quality of results, highlighting
the importance of selection criteria and diagnostic testing. Novel contributions come
from the pervasive sense of results to currency trends, as well as modelling options
in nontrivial ways. The knowledge of the relations among variables, allows the
government to make decisions taking into account these relationships, therefore,
the study contributes to the analysis of macroeconomic data of the Mozambique
economy in the presence of an external variable, which helps the process of defining
policies that increase the rate of sustainable economic growth of Mozambique. The
study also reinforces the idea that the success in applying a statistical test depends
on the preparation and type of data available.

6.2 Recommendations
After analysing some macroeconomic time series related to the Mozambique economy
using different econometric models, from this experience we recommend that:

• In order to provide adequate information to users such as government, other
organizations or companies, it is necessary to conduct macro-econometric stud-
ies using appropriate models that can capture the behavior of the variables
under study. Only in this way the forecasts are valid.

• The National Institute of Statistics in collaboration with other research insti-
tutions such as higher education, ministries should promote studies, especially
econometric studies with a view to improving the quality of economic informa-
tion, consequently developing the country.

• Even though this study contributes by presenting a range of models used
to study variables related to Mozambique economy, macroeconomic studies
still can be performed using similar or other variables related to Mozambique
or between the countries of the region to know the influence of countries
economies.
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